精英家教网 > 高中数学 > 题目详情
7.某同学先后投掷一枚骰子两次,所得的点数分别记为x,y,则点(x,y)落在函数y=2x的图象上的概率为$\frac{1}{12}$.

分析 先求出基本事件总数n=6×6=36,再利用列举法求出点(x,y)落在函数y=2x的图象上包含的基本事件个数,由此能求出点(x,y)落在函数y=2x的图象上的概率.

解答 解:某同学先后投掷一枚骰子两次,所得的点数分别记为x,y,
基本事件总数n=6×6=36,
点(x,y)落在函数y=2x的图象上包含的基本事件有:
(1,2),(2,4),(3,6),共3种,
∴点(x,y)落在函数y=2x的图象上的概率为p=$\frac{3}{36}=\frac{1}{12}$.
故答案为:$\frac{1}{12}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在△ABC中,|$\overrightarrow{AC}$|=1,|$\overrightarrow{CA}$-$\overrightarrow{CB}$|=|$\overrightarrow{CA}$+$\overrightarrow{CB}$|,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,\overrightarrow a•({\overrightarrow b-\overrightarrow a})=1$,则$|{\overrightarrow a-\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{7}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ex-ax-1,对?x∈R,f(x)≥0恒成立.
(1)求a的取值集合;
(2)求证:1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln({n+1})({n∈{N^*}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.有50件产品,编号从1至50,现从中抽5件检验,用系统抽样的方法确定所抽的编号可能是(  )
A.6,11,16,21,26B.3,13,23,33,43C.5,15,25,36,47D.10,20,29,39,49

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“经过两条相交直线有且只有一个平面”是(  )
A.全称命题B.特称命题C.p∨q的形式D.p∧q的形式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系中,O为坐标原点,已知向量$\overrightarrow{a}$=(-1,2),又点A(8,0),B(n,t),C(ksinθ,t),θ∈R.
(1)若$\overrightarrow{AB}$⊥$\overrightarrow{a}$,且$|\overrightarrow{AB}|=\sqrt{5}|\overrightarrow{OA}|$,求向量$\overrightarrow{OB}$;
(2)若向量$\overrightarrow{AC}$与向量$\overrightarrow{a}$共线,常数k>0,求f(θ)=tsinθ的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在区间[0,2]上随机地取一个数x,则事件“-1≤log ${\;}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1”发生的概率(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线3x+4y+2=0与圆x2+y2-2tx=0相切,则t=1或$-\frac{1}{4}$.

查看答案和解析>>

同步练习册答案