精英家教网 > 高中数学 > 题目详情
14.已知直线3x+4y+2=0与圆x2+y2-2tx=0相切,则t=1或$-\frac{1}{4}$.

分析 由直线与圆相切得到圆心到直线的距离d=r,利用点到直线的距离公式列出方程,求出方程的解即可得到t的值.

解答 解:圆x2+y2-2tx=0的标准方程为(x-t)2+y2=t2
∵直线3x+4y+2=0与圆x2+y2-2tx=0相切,
∴圆心(t,0)到直线的距离d=$\frac{|3t+2|}{5}$=|t|,
解得:t=1或$-\frac{1}{4}$.
故答案为:1或$-\frac{1}{4}$.

点评 此题考查了直线与圆的位置关系,当直线与圆相切时,圆心到直线的距离等于圆的半径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.某同学先后投掷一枚骰子两次,所得的点数分别记为x,y,则点(x,y)落在函数y=2x的图象上的概率为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在圆C中,弦AB的长为4,则$\overrightarrow{AB}•\overrightarrow{AC}$=(  )
A.8B.-8C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.条件p:不等式$\frac{x-3}{x+1}≤0$的解;条件q:不等式x2-2x-3<0的解,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow x$、$\overrightarrow y$满足:$|{\overrightarrow x}$|=1,$|{\overrightarrow y}$|=2,且${(\overrightarrow x-2\overrightarrow y)_{\;}}{•_{\;}}$$(2\overrightarrow x-\overrightarrow y)=5$.
(1)求$\overrightarrow x$与$\overrightarrow y$的夹角θ;
(2)若$(\overrightarrow x-m\overrightarrow y)⊥\overrightarrow y$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若(ax2+$\frac{1}{\sqrt{x}}$)5的展开式中常数是-80,则实数a=-16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,ABCD是平行四边形,已知AB=2BC=4,BD=2$\sqrt{3}$,BE=CE,平面BCE⊥平面ABCD.
(Ⅰ)证明:BD⊥CE;
(Ⅱ)若BE=CE=$\sqrt{10}$,求平面ADE与平面BCE所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$和圆${C_2}:{x^2}+{y^2}={b^2}$,若椭圆C1上存在点P,过点P作圆C2的两条切线PA,PB(A,B为对应的切点),且满足$∠APB=\frac{π}{3}$,则椭圆最圆的时离心率e=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.半径不等的两定圆O1,O2没有公共点,且圆心不重合,动圆O与定圆O1和定圆O2都内切,则圆心O的轨迹是(  )
A.双曲线的一支B.椭圆
C.双曲线的一支或椭圆D.双曲线或椭圆

查看答案和解析>>

同步练习册答案