精英家教网 > 高中数学 > 题目详情
2.条件p:不等式$\frac{x-3}{x+1}≤0$的解;条件q:不等式x2-2x-3<0的解,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由不等式的解法分别解出p,q,即可判断出关系.

解答 解:条件p:不等式$\frac{x-3}{x+1}≤0$,可得:(x-3)(x+1)≤0,x+1≠0,解得-1<x≤3;
条件q:不等式x2-2x-3<0,解得-1<x<3.
则p是q的必要不充分条件.
故选:B.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ex-ax-1,对?x∈R,f(x)≥0恒成立.
(1)求a的取值集合;
(2)求证:1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln({n+1})({n∈{N^*}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在区间[0,2]上随机地取一个数x,则事件“-1≤log ${\;}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1”发生的概率(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知|AB|=3,A、B分别在x轴和y轴上滑动,O为坐标原点,$\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}$,则动点P的轨迹方程是$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是导函数y=f′(x)的图象,对于函数y=f(x)的极值点的说法:?
①x1和x5是函数y=f(x)的极大值点;
②?x3和x6是函数y=f(x)的极小值点;
③x2是函数y=f(x)的极大值点;
④x4是函数y=f(x)的极小值点;
⑤x6不是函数y=f(x)的一个极值点.
其中正确的序号有③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)=ax3+3x2+2,f′(-1)=3,则a的值等于(  )
A.5B.4C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线3x+4y+2=0与圆x2+y2-2tx=0相切,则t=1或$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C:x2+y2-4x+3=0,
(1)求过M(3,2)点的圆的切线方程;
(2)直线l:2mx+2y-1-3m=0被圆C截得的弦长最短时,求直线l的方程;
(3)过原点的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线$y=k(x-\frac{5}{2})$与曲线C1只有一个交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线x2-my2=1的虚轴长是实轴长的两倍,则实数m的值是$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案