精英家教网 > 高中数学 > 题目详情
13.在区间[0,2]上随机地取一个数x,则事件“-1≤log ${\;}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1”发生的概率(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

分析 先解不等式,再利用解得的区间长度与区间[0,2]的长度求比值即可.

解答 解:利用几何概型,其测度为线段的长度;
∵-1≤${log}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1,
∴$\frac{1}{2}$≤x+$\frac{1}{2}$≤2,
解得0≤x≤$\frac{3}{2}$;
又∵0≤x≤2,
∴所求的概率为:
P=$\frac{\frac{3}{2}-0}{2-0}$=$\frac{3}{4}$.
故选:C.

点评 本题考查了几何概型的应用问题,也考查了对数函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下面几种推理中是演绎推理的为(  )
A.高二年级有21个班,1班51人,2班53人,三班52人,由此推测各班都超过50人
B.猜想数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通项公式为an=$\frac{1}{n(n+1)}$(n∈N+
C.半径为r的圆的面积S=πr2,则单位圆的面积S=π
D.由平面三角形的性质,推测空间四面体性质

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某同学先后投掷一枚骰子两次,所得的点数分别记为x,y,则点(x,y)落在函数y=2x的图象上的概率为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点O在△ABC的内部,且满足$\overrightarrow{OA}$+3$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,则△ABC的面积与△AOC的面积之比是(  )
A.1B.3C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,已知曲线C的参数方程为$\left\{\begin{array}{l}{x=acosα}\\{y=bsinα}\end{array}\right.$(α为参数),点M($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)在曲线C上,且对应的参数α=$\frac{π}{6}$.
(1)以原点O为极点,x轴正半轴为极轴建立极坐标系,求曲线C的极坐标方程;
(2)过点P(0,2)作斜率为$\sqrt{3}$的直线l,交曲线C于A、B两点,求直线l的参数方程及|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱柱ABC-A1B1C1的侧面ABB1A1为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C
(1)求证:平面ABB1A1⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在圆C中,弦AB的长为4,则$\overrightarrow{AB}•\overrightarrow{AC}$=(  )
A.8B.-8C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.条件p:不等式$\frac{x-3}{x+1}≤0$的解;条件q:不等式x2-2x-3<0的解,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$和圆${C_2}:{x^2}+{y^2}={b^2}$,若椭圆C1上存在点P,过点P作圆C2的两条切线PA,PB(A,B为对应的切点),且满足$∠APB=\frac{π}{3}$,则椭圆最圆的时离心率e=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案