8£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=acos¦Á}\\{y=bsin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬µãM£¨$\frac{\sqrt{6}}{2}$£¬$\frac{1}{2}$£©ÔÚÇúÏßCÉÏ£¬ÇÒ¶ÔÓ¦µÄ²ÎÊý¦Á=$\frac{¦Ð}{6}$£®
£¨1£©ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨2£©¹ýµãP£¨0£¬2£©×÷бÂÊΪ$\sqrt{3}$µÄÖ±Ïßl£¬½»ÇúÏßCÓÚA¡¢BÁ½µã£¬ÇóÖ±ÏßlµÄ²ÎÊý·½³Ì¼°|PA|+|PB|µÄÖµ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²²ÎÊý·½³Ì¿ÉµÃ£º$\frac{\sqrt{6}}{2}$=acos$\frac{¦Ð}{6}$£¬$\frac{1}{2}$=bsin$\frac{¦Ð}{6}$£¬½âµÃa£¬b£®¿ÉµÃÇúÏßCµÄ²ÎÊý·½³Ì£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬½ø¶ø¿É»¯Îª¼«×ø±ê·½³Ì£®
£¨2£©ÓÉÒÑÖª¿ÉµÃÖ±ÏßlµÄ²ÎÊý·½³Ì£¬´úÈëÇúÏßCµÄ·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ£º|PA|+|PB|µÄÖµ£®

½â´ð ½â£º£¨1£©ÓÉÇúÏßCµÄ²ÎÊý·½³Ì£º$\left\{\begin{array}{l}{x=acos¦Á}\\{y=bsin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬
¿ÉµÃ£º$\frac{\sqrt{6}}{2}$=acos$\frac{¦Ð}{6}$£¬$\frac{1}{2}$=bsin$\frac{¦Ð}{6}$£¬
½âµÃa=$\sqrt{2}$£¬b=1£®
¡àÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{2}cos¦Á\\ y=sin¦Á\end{array}\right.$£¬ÆäÖ±½Ç×ø±ê·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£¬
Æä¼«×ø±ê·½³ÌΪ£º¦Ñ2cos2¦È+2¦Ñ2sin2¦È=2£®
£¨2£©¡ßÖ±ÏßlµãP£¨0£¬2£©ÇÒбÂÊΪ$\sqrt{3}$£¬
¹ÊÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{\sqrt{3}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬
´úÈëÇúÏßCµÄ·½³Ì¿ÉµÃ£º$\frac{7}{8}$t2+£¨2$\sqrt{3}+\frac{1}{2}$£©t+$\frac{7}{2}$=0£¬
¡à|PA|+|PB|=|t1+t2|=$\frac{16\sqrt{3}+4}{7}$

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢ÍÖÔ²µÄ²ÎÊýÖ±½Ç·½³Ì¼«×ø±ê·½³ÌµÄ»¥»¯¼°ÆäÓ¦Óá¢Ö±ÏߵIJÎÊý·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬Æä¹«±ÈΪ2£¬Ôò$\frac{{2{a_1}+{a_2}}}{{2{a_3}+{a_4}}}$=$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÓÐ50¼þ²úÆ·£¬±àºÅ´Ó1ÖÁ50£¬ÏÖ´ÓÖгé5¼þ¼ìÑ飬ÓÃϵͳ³éÑùµÄ·½·¨È·¶¨Ëù³éµÄ±àºÅ¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®6£¬11£¬16£¬21£¬26B£®3£¬13£¬23£¬33£¬43C£®5£¬15£¬25£¬36£¬47D£®10£¬20£¬29£¬39£¬49

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OÎª×ø±êÔ­µã£¬ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨-1£¬2£©£¬ÓÖµãA£¨8£¬0£©£¬B£¨n£¬t£©£¬C£¨ksin¦È£¬t£©£¬¦È¡ÊR£®
£¨1£©Èô$\overrightarrow{AB}$¡Í$\overrightarrow{a}$£¬ÇÒ$|\overrightarrow{AB}|=\sqrt{5}|\overrightarrow{OA}|$£¬ÇóÏòÁ¿$\overrightarrow{OB}$£»
£¨2£©ÈôÏòÁ¿$\overrightarrow{AC}$ÓëÏòÁ¿$\overrightarrow{a}$¹²Ïߣ¬³£Êýk£¾0£¬Çóf£¨¦È£©=tsin¦ÈµÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¡÷ABCµÄÈý¸ö¶¥µã×ø±ê·Ö±ðΪA£¨1£¬4£©¡¢B£¨5£¬-2£©¡¢C£¨1£¬2£©£¬Çó£º
£¨1£©±ßBCÖеãDµÄ×ø±ê£»
£¨2£©BC±ßÉÏÖÐÏßADµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚÇø¼ä[0£¬2]ÉÏËæ»úµØÈ¡Ò»¸öÊýx£¬Ôòʼþ¡°-1¡Ülog ${\;}_{\frac{1}{2}}$£¨x+$\frac{1}{2}$£©¡Ü1¡±·¢ÉúµÄ¸ÅÂÊ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{2}{3}$C£®$\frac{3}{4}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªº¯Êý$f£¨x£©=\left\{{\begin{array}{l}{{x^2}+x+1£¬x¡Ý0}\\{2x+1£¬x£¼0}\end{array}}\right.$£¬Èôf£¨sin¦Á+sin¦Â+sinr-1£©=-1£¬f£¨cos¦Á+cos¦Â+cosr+1£©=3£¬Ôòcos£¨¦Á-¦Â£©+cos£¨¦Â-r£©µÄֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®-1D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈçͼÊǵ¼º¯Êýy=f¡ä£¨x£©µÄͼÏ󣬶ÔÓÚº¯Êýy=f£¨x£©µÄ¼«ÖµµãµÄ˵·¨£º?
¢Ùx1ºÍx5ÊǺ¯Êýy=f£¨x£©µÄ¼«´óÖµµã£»
¢Ú?x3ºÍx6ÊǺ¯Êýy=f£¨x£©µÄ¼«Ð¡Öµµã£»
¢Ûx2ÊǺ¯Êýy=f£¨x£©µÄ¼«´óÖµµã£»
¢Üx4ÊǺ¯Êýy=f£¨x£©µÄ¼«Ð¡Öµµã£»
¢Ýx6²»ÊǺ¯Êýy=f£¨x£©µÄÒ»¸ö¼«Öµµã£®
ÆäÖÐÕýÈ·µÄÐòºÅÓТۢܢݣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÔ²O£ºx2+y2=2£¬Ö±Ïßl¹ýÁ½µãA£¨1£¬-$\frac{3}{2}$£©£¬B£¨4£¬0£©
£¨1£©ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©ÈôPÊÇÖ±ÏßlÉϵ͝µã£¬¹ýP×÷Ô²OµÄÁ½ÌõÇÐÏßPC£¬PD£¬ÇеãΪC£¬D£¬ÇóÖ¤£ºÖ±ÏßCD¹ý¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸