精英家教网 > 高中数学 > 题目详情
17.如图是导函数y=f′(x)的图象,对于函数y=f(x)的极值点的说法:?
①x1和x5是函数y=f(x)的极大值点;
②?x3和x6是函数y=f(x)的极小值点;
③x2是函数y=f(x)的极大值点;
④x4是函数y=f(x)的极小值点;
⑤x6不是函数y=f(x)的一个极值点.
其中正确的序号有③④⑤.

分析 利用导函数的图象,结合函数的极值点,判断求解即可.

解答 解:由函数的导数值为0,两侧的导函数的符号相反,则这点是函数的极值点,
①x1不是函数的极值点,x5不是函数y=f(x)的极值点;所以①不正确;
②?x3不是函数的极值点,x6不是函数y=f(x)的极值点;所以②不正确;
③因为f(x2)=0,并且x∈(x1,x2),f(x)>0,x∈(x2,x3),f(x)<0,x2是函数y=f(x)的极大值点;正确;
④因为f(x4)=0,并且x∈(x3,x4),f(x)<0,x∈(x4,x5),f(x)>0,x4是函数y=f(x)的极小值点;正确;
⑤因为f(x6)=0,并且x∈(x5,b),f(x)≥0,x6不是函数y=f(x)的一个极值点.正确;
故答案为:③④⑤.

点评 本题考查函数的极值点的判断与应用,函数的图象的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.执行如图的程序框图,则输出的n为(  )
A.9B.11C.13D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,已知曲线C的参数方程为$\left\{\begin{array}{l}{x=acosα}\\{y=bsinα}\end{array}\right.$(α为参数),点M($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)在曲线C上,且对应的参数α=$\frac{π}{6}$.
(1)以原点O为极点,x轴正半轴为极轴建立极坐标系,求曲线C的极坐标方程;
(2)过点P(0,2)作斜率为$\sqrt{3}$的直线l,交曲线C于A、B两点,求直线l的参数方程及|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在圆C中,弦AB的长为4,则$\overrightarrow{AB}•\overrightarrow{AC}$=(  )
A.8B.-8C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织得快,而且每天增加的数量相同,已知第一天织布10尺,一个月(按30天计算)总共织布6尺,问每天增加的数量为多少尺?该问题的答案为(  )
A.$\frac{8}{29}$尺B.$\frac{16}{29}$尺C.$\frac{32}{29}$尺D.$\frac{1}{2}$尺

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.条件p:不等式$\frac{x-3}{x+1}≤0$的解;条件q:不等式x2-2x-3<0的解,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow x$、$\overrightarrow y$满足:$|{\overrightarrow x}$|=1,$|{\overrightarrow y}$|=2,且${(\overrightarrow x-2\overrightarrow y)_{\;}}{•_{\;}}$$(2\overrightarrow x-\overrightarrow y)=5$.
(1)求$\overrightarrow x$与$\overrightarrow y$的夹角θ;
(2)若$(\overrightarrow x-m\overrightarrow y)⊥\overrightarrow y$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,ABCD是平行四边形,已知AB=2BC=4,BD=2$\sqrt{3}$,BE=CE,平面BCE⊥平面ABCD.
(Ⅰ)证明:BD⊥CE;
(Ⅱ)若BE=CE=$\sqrt{10}$,求平面ADE与平面BCE所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若直线x+y+m=0上存在点P可作圆O:x2+y2=1的两条切线PA、PB,切点为A、B,且∠APB=60°,则实数m的取值范围为$[-2\sqrt{2},2\sqrt{2}]$.

查看答案和解析>>

同步练习册答案