| A. | 8 | B. | -8 | C. | 4 | D. | -4 |
分析 根据平面向量数量积的定义,利用圆的垂径定理,即可求出答案.
解答 解:如图所示,![]()
在圆C中,过点C作CD⊥AB于D,则D为AB的中点;
在Rt△ACD中,AD=$\frac{1}{2}$AB=2,
可得cosA=$\frac{AD}{AC}$=$\frac{2}{|\overrightarrow{AC}|}$,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|×|$\overrightarrow{AC}$|×cosA=4×|$\overrightarrow{AC}$|×$\frac{2}{|\overrightarrow{AC}|}$=8.
故选:A.
点评 本题考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $2\sqrt{2}$ | C. | $\sqrt{7}$ | D. | $\sqrt{23}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=-4sin(\frac{π}{8}x-\frac{π}{4})$ | B. | $y=4sin(\frac{π}{8}x-\frac{π}{4})$ | C. | $y=-4sin(\frac{π}{8}x+\frac{π}{4})$ | D. | $y=4sin(\frac{π}{8}x+\frac{π}{4})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com