精英家教网 > 高中数学 > 题目详情
18.如图,三棱柱ABC-A1B1C1的侧面ABB1A1为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C
(1)求证:平面ABB1A1⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC-A1B1C1的高.

分析 (1)证明AB⊥BB1.AB⊥B1C,推出AB⊥平面BB1C1C,然后证明平面ABB1A1⊥BB1C1C.
(2)设O是BB1的中点,连结CO,则CO⊥BB1.求出CO,连结AB1,利用${V}_{{B}_{1}-ABC}$=${V}_{C-AB{B}_{1}}$求解三棱柱ABC-A1B1C1的高即可.

解答 (1)证明:由侧面ABB1A1为正方形,知AB⊥BB1
又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,
又AB?平面ABB1A1,所以平面ABB1A1⊥BB1C1C.
…(5分)
解:(2)设O是BB1的中点,连结CO,则CO⊥BB1
由(1)知,CO⊥平面ABB1A1,且CO=$\frac{\sqrt{3}}{2}$BC=$\frac{\sqrt{3}}{2}$AB=$\sqrt{3}$…(7分)
连结AB1,则${V}_{C-AB{B}_{1}}$=$\frac{1}{3}$${S}_{△AB{B}_{1}}$•CO=$\frac{1}{6}$AB2•CO=$\frac{2\sqrt{3}}{3}$…(9分)
因${V}_{{B}_{1}-ABC}$=${V}_{C-AB{B}_{1}}$=$\frac{1}{3}×\frac{1}{2}×2×2×h$=$\frac{2\sqrt{3}}{3}$,则h=$\sqrt{3}$.
故三棱柱ABC-A1B1C1的高$\sqrt{3}$…(12分)

点评 本题考查空间几何体的距离的求法,等体积法的应用,直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为(  )
A.(0,1)B.(1,0)C.(2,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“经过两条相交直线有且只有一个平面”是(  )
A.全称命题B.特称命题C.p∨q的形式D.p∧q的形式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)离心率e=$\frac{\sqrt{2}}{2}$,过C(-1,0)点且斜率为1的直线l与椭圆交于A,B两点,且C点分有向线段$\overrightarrow{AB}$所成的比为3.
(1)求该椭圆方程;
(2)P,Q为椭圆上两动点,满足$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,探求$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在区间[0,2]上随机地取一个数x,则事件“-1≤log ${\;}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1”发生的概率(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=Asin(ωx+φ)(A>0,?>0,|φ|<$\frac{π}{2}$)的简图如下,则A,ω,φ分别为(  )
A.1,2,-$\frac{π}{3}$B.1,$\frac{1}{2}$,-$\frac{π}{3}$C.1,2,$\frac{π}{6}$D.1,$\frac{1}{2}$,$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知|AB|=3,A、B分别在x轴和y轴上滑动,O为坐标原点,$\overrightarrow{OP}=\frac{2}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}$,则动点P的轨迹方程是$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)=ax3+3x2+2,f′(-1)=3,则a的值等于(  )
A.5B.4C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若变量x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤8\\ 2y-x≤4\end{array}\right.$,且z=5y-x的最大值为a,最小值为b,则a-b的值是(  )
A.16B.24C.30D.48

查看答案和解析>>

同步练习册答案