| A. | 16 | B. | 24 | C. | 30 | D. | 48 |
分析 作出可行域,变形目标函数可得y=$\frac{1}{5}$x+$\frac{1}{5}$z,平移直线y=$\frac{1}{5}$x,易得最大值和最小值,作差可得答案.
解答 解:作出变量x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤8\\ 2y-x≤4\end{array}\right.$,所对应的可行域(如图阴影),
变形目标函数可得y=$\frac{1}{5}$x+$\frac{1}{5}$z,
平移直线y=$\frac{1}{5}$x,可知当直线经过点A(8,0)时,目标函数取最小值b=-8,
当直线经过点B(4,4)时,目标函数取最大值a=16,
∴a-b=16-(-8)=24
故选:B.![]()
点评 本题考查简单线性规划的运用,注意运用数形结合的思想方法,以及平移法,准确作图是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲、乙、丙的总体的平均数不相同 | B. | 乙科总体的标准差及平均数都居中 | ||
| C. | 丙科总体的平均数最小 | D. | 甲科总体的标准差最小 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 2 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com