精英家教网 > 高中数学 > 题目详情
13.已知曲线y=$\frac{{x}^{2}}{2}$-3lnx的一条切线的与直线x+2y+10=0垂直,则切点的横坐标为(  )
A.$\frac{1}{3}$B.2C.1D.3

分析 设出切点坐标,求出原函数的导函数,结合切线与直线x+2y+10=0垂直,可得关于切点横坐标的方程,求解得答案.

解答 解:设切点坐标为(x0,y0),且x0>0,
由y′=x-$\frac{3}{x}$,得k=x0-$\frac{3}{{x}_{0}}$,
∵切线与直线x+2y+10=0垂直,
∴x0-$\frac{3}{{x}_{0}}$=2,解得x0=3或x0=-1(舍).
故选:D.

点评 本题考查利用导数研究过曲线上某点处的切线方程,关键是明确函数在某点处的切线的斜率,就是函数在该点处的导数值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=Asin(ωx+φ)(A>0,?>0,|φ|<$\frac{π}{2}$)的简图如下,则A,ω,φ分别为(  )
A.1,2,-$\frac{π}{3}$B.1,$\frac{1}{2}$,-$\frac{π}{3}$C.1,2,$\frac{π}{6}$D.1,$\frac{1}{2}$,$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A、B、C的对边分别为a、b、c,且$\frac{2b-a}{cosA}=\frac{c}{cosC}$.
(Ⅰ)求角C的值;
(Ⅱ)若BC=2$\sqrt{2}$,BC边上的中线AM=$\sqrt{26}$,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知方程$\frac{x^2}{m-1}+\frac{y^2}{4-m}=1$表示焦点在x轴上的双曲线的一个充分不必要条件是(  )
A.(4,+∞)B.(5,+∞)C.$(1,\frac{5}{2})$D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若变量x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+y≤8\\ 2y-x≤4\end{array}\right.$,且z=5y-x的最大值为a,最小值为b,则a-b的值是(  )
A.16B.24C.30D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,-1),且离心率为$\frac{\sqrt{2}}{2}$,求椭圆E的方程;
(2)求经过M(2,$\sqrt{2}$),N($\sqrt{6}$,1)两点的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知两点A(1,2).B(2,1)在直线mx-y+1=0的异侧,则实数m的取值范围为(  )
A.(-∞,0)B.(1,+∞)C.(0,1)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了考察某种药物预防禽流感的效果,某研究中心选了50只鸭子做实验,统计结果如下:
得禽流感不得禽流感总计
服药52025
不服药151025
总计203050
(1)能有多大的把握认为药物有效?
(2)在服药后得禽流感的鸭子中,有2只母鸭,3只公鸭,在这5只中随机抽取3只再进行研究,求至少抽到1只母鸭的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
临界值表:
 P(K2≥k0 0.10 0.05 0.01
 k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设$a,b,c∈({0,\frac{π}{2}})$,且满足cosa=a,sin(cosb)=b,cos(sinc)=c,则a,b,c的大小关系为b<a<c.

查看答案和解析>>

同步练习册答案