精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=Asin(ωx+φ)(A>0,?>0,|φ|<$\frac{π}{2}$)的简图如下,则A,ω,φ分别为(  )
A.1,2,-$\frac{π}{3}$B.1,$\frac{1}{2}$,-$\frac{π}{3}$C.1,2,$\frac{π}{6}$D.1,$\frac{1}{2}$,$\frac{π}{6}$

分析 根据已知中函数f(x)=Asin(ωx+φ)(A>0,?>0,|φ|<$\frac{π}{2}$)的简图,分析函数的最值,周期,最大值点,进而可得A,ω,φ的值.

解答 解:∵函数f(x)=Asin(ωx+φ)(A>0,?>0,|φ|<$\frac{π}{2}$)的最大值为1,最小值为-1,
故A=1,
由$\frac{T}{2}$=$\frac{2π}{3}$-$\frac{π}{6}$=$\frac{π}{2}$,
故T=π=$\frac{2π}{ω}$,
故ω=2,
将x=$\frac{π}{6}$代入得:2×$\frac{π}{6}$+φ=$\frac{π}{2}$,
解得:φ=$\frac{π}{6}$,
故选:C.

点评 本题考查的知识点是函数f(x)=Asin(ωx+φ)的图象和性质,函数f(x)=Asin(ωx+φ)的解析式求法,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知三点A(-1,-1),B(1,x),C(2,5)共线,则x的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow a=({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$,向量$\overrightarrow b=({-1,0})$,向量$\overrightarrow c$满足$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$.
(1)若$\overrightarrow d=k\overrightarrow a-\overrightarrow b$,且$\overrightarrow a⊥\overrightarrow d$,求$|\overrightarrow d|$的值;
(2)若$\overrightarrow a-k\overrightarrow b$与$2\overrightarrow b+\overrightarrow c$共线,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知四边形ABCD为正方形,点E是CD的中点,若$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{AD}$=$\vec b$,则$\overrightarrow{BE}$=(  )
A.$\frac{1}{2}$$\vec b$+$\vec a$B.$\vec b$$-\frac{1}{2}$$\vec a$C.$\frac{1}{2}$$\vec a$+$\vec b$D.$\vec a$-$\frac{1}{2}$$\vec b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱柱ABC-A1B1C1的侧面ABB1A1为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C
(1)求证:平面ABB1A1⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.阿基米德在《论球与圆柱》一书中推导球的体积公式时,得到一个等价的三角恒等式sin$\frac{π}{2n}+sin\frac{2π}{2n}+…+\frac{(2n-1)π}{2n}=\frac{1}{{tan\frac{π}{4n}}}$,若在两边同乘以$\frac{π}{2n}$,并令n→+∞,则左边=$\lim_{x→∞}\sum_{i=1}^{2n}{\frac{π}{2n}sin\frac{iπ}{2n}}=\int_0^π{sinxdx}$.因此阿基米德实际上获得定积分$\int_0^π{sinxdx}$的等价结果.则$\int_0^π{sinxdx}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(-2,2,-1),向量$\overrightarrow{b}$=(0,3,-4),则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$上的投影是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合M={y|y=$\frac{1}{{x}^{2}}$},N={x|y=$\sqrt{x-1}$},那么M∩N=(  )
A.(0,+∞)B.(1,+∞)C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知曲线y=$\frac{{x}^{2}}{2}$-3lnx的一条切线的与直线x+2y+10=0垂直,则切点的横坐标为(  )
A.$\frac{1}{3}$B.2C.1D.3

查看答案和解析>>

同步练习册答案