| A. | $\frac{1}{2}$ | B. | $\frac{17}{16}$ | C. | 2 | D. | 17 |
分析 利用等比数列的通项公式及其前n项和公式即可得出.
解答 解:设等比数列{an}的公比为q,
∵a2-8a5=0,∴${a}_{2}(1-8{q}^{3})$=0,解得q=$\frac{1}{2}$.
则$\frac{{S}_{8}}{{S}_{4}}$=$\frac{\frac{{a}_{1}(1-\frac{1}{{2}^{8}})}{1-\frac{1}{2}}}{\frac{{a}_{1}(1-\frac{1}{{2}^{4}})}{1-\frac{1}{2}}}$=$1+\frac{1}{{2}^{4}}$=$\frac{17}{16}$.
故选:B.
点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | -1 | C. | 1 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0} | B. | {-2,-1,0,1} | C. | {x|-2<x<1} | D. | {x|-2≤x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{2}{5}$ln2 | C. | $\frac{2}{5}$(1-ln2)2 | D. | $\frac{(9-2ln3)^{2}}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com