精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x=$\frac{π}{6}$取得最大值2,方程f(x)=0的两个根为x1、x2,且|x1-x2|的最小值为π.
(1)求f(x);
(2)将函数y=f(x)图象上各点的横坐标压缩到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调增区间和在(-$\frac{π}{4}$,$\frac{π}{4}$)上的值域.

分析 (1)由最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的单调性、定义域和值域,求得结论.

解答 解:(1)∵函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x=$\frac{π}{6}$取得最大值2,∴A=2,
方程f(x)=0的两个根为x1、x2,且|x1-x2|的最小值为$\frac{T}{2}$=$\frac{π}{ω}$=π,∴ω=1,
再根据五点法作图可得1•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{3}$,∴$f(x)=2sin(x+\frac{π}{3})$.
(2)将函数y=f(x)图象上各点的横坐标压缩到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)=2sin(2x+$\frac{π}{3}$)的图象,
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,可得函数g(x)的增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.
在(-$\frac{π}{4}$,$\frac{π}{4}$)上,∵2x+$\frac{π}{3}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),∴g(x)=2sin(2x+$\frac{π}{3}$)∈(-1,2].

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由最值求出A,由周期求出ω,由五点法作图求出φ的值.函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性、定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16. 已知三棱柱ABC-A1B1C1中,A1A⊥底面ABC,∠BAC=90°,A1A=1,$AB=\sqrt{3}$,AC=2,E、F分别为棱C1C、BC的中点.
(Ⅰ)求证 AC⊥A1B;
(Ⅱ)求直线EF与A1B所成的角;
(Ⅲ)若G为线段A1A的中点,A1在平面EFG内的射影为H,求∠HA1A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱柱ABC-A1B1C1中,G为ABC的重心,BE=$\frac{1}{3}$BC1
(1)求证:GE∥平面AA1B1B;
(2)若侧面ABB1A1⊥底面ABC,∠A1AB=∠BAC=60°,AA1=AB=AC=2,求直线A1B与平面B1GE所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,如果输入的x∈[-2,2],那么输出的y属于(  )
A.[5,9]B.[3,9]C.(1,9]D.(3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个兴趣学习小组由12男生6女生组成,从中随机选取3人作为领队,记选取的3名领队中男生的人数为X,则X的期望E(X)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足an+1=$\frac{{(n+2)a_n^2-n{a_n}+n+1}}{a_n^2+1}$(n∈N+),且a1=1.
(1)求a2,a3,a4,猜测an,并用数学归纳法证明;
(2)若n≥4,试比较3an与(n-1)•2n+2n2的大小,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.此人停留期间空气质量优良的天数只有1天的概率(  )
A.$\frac{1}{13}$B.$\frac{2}{13}$C.$\frac{3}{13}$D.$\frac{4}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=3上,圆弧C1的圆心是坐标原点O,半径为5,圆弧C2过点A(-1,0).
(1)求圆弧C2的方程;
(2)曲线C上是否存在点P,满足PA=$\frac{{\sqrt{2}}}{2}$PO?若存在,指出有几个这样的点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.正三棱柱的底面边长为$\sqrt{3}$,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为(  )
A.B.C.12πD.16π

查看答案和解析>>

同步练习册答案