分析 利用基本不等式的使用法则:“一正二定三相等”即可判断出结论.
解答 解:①y=|x+$\frac{1}{x}$|=|x|+$\frac{1}{|x|}$≥2$\sqrt{|x|•\frac{1}{|x|}}$=2,当且仅当x=±1时取等号,因此y的最小值为2;
②y=$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$=$\sqrt{{x}^{2}+1}$+$\frac{1}{\sqrt{{x}^{2}+1}}$≥2$\sqrt{\sqrt{{x}^{2}+1}•\frac{1}{\sqrt{{x}^{2}+1}}}$=2,当且仅当x=0时取等号,最小值为2;
③y=log2x+logx2(x>0且≠1),当0<x<1时,log2x<0,因此没有最小值;
④y=3x+3-x≥$2\sqrt{{3}^{x}•{3}^{-x}}$=2,当且仅当x=0时取等号,因此最小值为2.
综上可得:最小值为2的函数是①②④.
故答案为:①②④.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 12π | B. | 16π | C. | 18π | D. | 24π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 当x>0且x≠1时,lgx+$\frac{1}{lgx}$≥2 | |
| B. | 当x>0时,$\sqrt{x}$+$\frac{1}{\sqrt{x}}$≥2 | |
| C. | 当0<θ≤$\frac{π}{2}$时,sinθ+$\frac{2}{sinθ}$的最小值为2$\sqrt{2}$ | |
| D. | 当-$\frac{1}{2}$≤x<0时,x+$\frac{1}{x}$有最大值-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com