精英家教网 > 高中数学 > 题目详情
关于函数f(x)=cos(sinx),下列说法正确的是
 

①定义域为R;
②值域为[-1,1];
③最小正周期是2π;
④图象关于直线x=
2
(k∈Z)对称.
考点:余弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:首先对函数的性质进行分析利用验证的方法求的结果.
解答: 解:函数f(x)=cos(sinx),
则:函数的定义域为R,
故①正确.
函数的值域由sinx的值域确定由于-1≤sinx≤1
函数f(x)=cos(sinx)的最小值取不到-1.
故②错误.
由于f(x+π)=cos[sin(x+π)]=f(x),
所以③错误,
当x=
2
时,f(
2
)=1,
故④正确.
故答案为:①④
点评:本题考查的知识要点:函数的性质的应用,对称轴的应用属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
bx-a
ax
(a>0,x>0)的图象过点(a,0).
(1)判断函数f(x)在(0.+∞)上的单调并用函数单调性定义加以证明;
(2)若a>
1
5
函数f(x)在[
1
5a
,5a]上的值域是[
1
5a
,5a],求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,则g(
1
2014
)+g(
2
2014
)+…+g(
2013
2014
)(  )
A、2011B、2012
C、2013D、2014

查看答案和解析>>

科目:高中数学 来源: 题型:

4
2
1
x
dx(  )
A、-2ln2
B、ln 2
C、2 ln 2
D、-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)(1+tan2α)cos2α;
(2)
1+sinα
1-sinα
-
1-sinα
1+sinα
,其中α为第二象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-3x+b
3x+1+a
是奇函数.
(1)求a,b的值;
(2)若对任意的t∈R,不等式f(2t2-2t)+f(t2-2k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若acosC=(2b-c) cosA,3b=2c,S△ABC=
3
3
2

(Ⅰ)求∠A与b的值;
(Ⅱ)求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列写法:
(1){0}∈{1,2,3};(2)∅⊆{0};(3){0,1,2}⊆{1,2,0};(4)0∈∅
其中错误写法的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
1
1-i
+
i
1+i
=(  )
A、-i
B、1-i
C、1+i                        D.i

查看答案和解析>>

同步练习册答案