精英家教网 > 高中数学 > 题目详情
14.在△ABC中,AB=2,AC=1,∠BAC=120°,AH为△ABC的高线,则$\overrightarrow{AB}$•$\overrightarrow{AH}$=(  )
A.$\frac{\sqrt{21}}{7}$B.$\frac{1}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

分析 由题意画出图形,求解三角形得到AH,BH的长度,以BC所在直线为x轴,以HA所在直线为y轴建立平面直角坐标系,求出A,B的坐标,得到$\overrightarrow{AB},\overrightarrow{AH}$的坐标,代入数量积的坐标运算得答案.

解答 解:如图,

在△ABC中,AB=2,AC=1,∠BAC=120°,
则BC2=AB2+AC2-2AB•AC•cos∠BAC=$4+1-2×2×1×cos120°=5-4×(-\frac{1}{2})=7$,
由$\frac{1}{2}BC•AH=\frac{1}{2}AB•AC•sin∠BAC$,得$\sqrt{7}AH=2×1×sin120°=\sqrt{3}$,∴AH=$\frac{\sqrt{21}}{7}$.
∴BH=$\sqrt{{2}^{2}-\frac{3}{7}}=\frac{5\sqrt{7}}{7}$.
以BC所在直线为x轴,以HA所在直线为y轴,建立平面直角坐标系,
则B($-\frac{5\sqrt{7}}{7},0$),A(0,$\frac{\sqrt{21}}{7}$),则$\overrightarrow{AB}=(-\frac{5\sqrt{7}}{7},-\frac{\sqrt{21}}{7})$,$\overrightarrow{AH}=(0,-\frac{\sqrt{21}}{7})$,
则$\overrightarrow{AB}•\overrightarrow{AH}=(-\frac{\sqrt{21}}{7})×(-\frac{\sqrt{21}}{7})=\frac{3}{7}$.
故选:C.

点评 本题考查平面向量的数量积运算,考查了正弦定理和余弦定理在解三角形中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若a<b<0,则下列不等式中不成立的是(  )
A.$\frac{1}{a-1}<\frac{1}{b}$B.$\frac{1}{b}<\frac{1}{a}$C.|a|>-bD.$\sqrt{-a}>\sqrt{-b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设$\overrightarrow{a}$,$\overrightarrow b$为非零向量,则“向量$\overrightarrow{a,}\overrightarrow b$的夹角为锐角”是“$\overrightarrow{a}$•$\overrightarrow{b}$>0”的充分不必要条件(填“充分不必要”.“必要不充分”,“充要”或“既不充分也不必要”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=-3+4i(i是虚数单位),则复数$\frac{\overline z}{1+i}$的虚部为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}i$C.$\frac{1}{2}$D.-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,直线L的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2$\sqrt{5}$sinθ,试判断圆C与直线L的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知正项等比数列{an}中,其前n项和为Sn,若a2=2,a6=32,则S100=(  )
A.299-1B.2100+1C.2101-1D.2100-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.频率是概率
B.随着试验次数增加,频率一般会越接近概率
C.频率是客观存在的与试验次数无关
D.随机事件的概率总是在(0,1)内

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex+ae-x-2x是奇函数.
(Ⅰ)求实数a的值,并判断f(x)的单调性;
(Ⅱ)设函数g(x)=f(2x)-4bf(x),当x>0时,g(x)>0恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)={(\frac{1}{2})^x}$,且f(a+1)>f(2a),则a的取值范围是(1,+∞).

查看答案和解析>>

同步练习册答案