分析 (Ⅰ)根据函数的奇偶性,求出a的值,求出函数的导数,判断函数的单调性即可;
(Ⅱ)求出g(x)的表达式,通过讨论b的范围,结合函数的单调性从而确定b的范围即可.
解答 解:(Ⅰ)因为f(x)=ex+ae-x-2x是奇函数,所以f(-x)=-f(x),
即e-x+aex+2x=-(ex+ae-x-2x),解得a=-1,
因为f(x)=ex-e-x-2x,所以$f'(x)={e^x}+{e^{-x}}-2≥2\sqrt{{e^x}•{e^{-x}}}-2=0$,
当且仅当x=0时,等号成立,所以f(x)在(-∞,+∞)上单调递增.…(4分)
(Ⅱ)g(x)=f(2x)-4bf(x)
=e2x-e-2x-4x-4b(ex-e-x-2x)
=e2x-e-2x-4b(ex-e-x)+(8b-4)xg'(x)
=2e2x+2e-2x-4b(ex+e-x)+(8b-4)
=2[(ex+e-x)2-2b(ex+e-x)+4(b-1)]
=2[ex+e-x-2][ex+e-x-2(b-1)].…(7分)
①当2(b-1)≤2即b≤2时,g'(x)≥0,等号仅当x=0时成立,
所以g(x)在(-∞,+∞)上单调递增.
而g(0)=0,所以对任意x>0,g(x)>0,
②当b>2时,若x满足2<ex+e-x<2b-2,
即$0<x<ln(b-1+\sqrt{{b^2}-2b})$时,g'(x)<0,
而g(0)=0,因此当$0<x<ln(b-1+\sqrt{{b^2}-2b})$时,g(x)<0,不符合题意,
综上知,b的取值范围是(-∞,2].…(12分)
点评 本题考查了函数的奇偶性、单调性问题,考查导数的应用以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{21}}{7}$ | B. | $\frac{1}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $-\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{2}$ | B. | 9 | C. | 15 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 5 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com