精英家教网 > 高中数学 > 题目详情
求不等式a10x+23>a27x-28(a>0且a≠1)中的x的取值范围.
考点:指、对数不等式的解法
专题:函数的性质及应用
分析:利用指数函数y=ax的单调性由a确定,所以需要讨论a,确定指数的大小.
解答: 解:①当 a>1时,有 10x+23>27x-28,-----(5分)
解得 x<3;-----(6分)
②当 0<a<1时,有 10x+23<27x-28,-----(10分)
解得    x>3.-----(11分)
所以,当 a>1时,x的取值范围为{x|x<3};
当0<a<1时,x的取值范围为{x|x>3}.-----(12分)
点评:本题考查了利用函数的单调性解不等式,同时考查了学生的讨论意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,f(x)是偶函数的是(  )
A、f(x)=2|x|-1
B、f(x)=x2,x∈[-2,2)
C、f(x)=x2+x
D、f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:

(文) 定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域R的函数f(x)为偶函数,且f(x+2)=f(x)对任意实数x恒成立,当0≤x≤1时,f(x)=x.
(1)求当-1≤x<0时,f(x)的解析式;
(2)求当x∈[2k-1,2k+1),(k∈Z)时,函数f(x)的解析式;
(3)求方程f(x)=
1
2
在区间[-1,2013]内的所有解的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+a)-x2+x,g(x)=x•ex-x2-1(x>0),且f(x)点x=1处取得极值.
(Ⅰ)求实数a的值;
(Ⅱ)若关于x的方程f(x)=-
5
2
x+b在区间[1,3]上有解,求b的取值范围;
(Ⅲ)证明:g(x)≥f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx在x=1处有极值-2.
(1)求常数a、b;
(2)求曲线y=
f(x)
x
与直线y=x-1所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x.
(1)求曲线y=f(x)在x=t处的切线方程;
(2)若在x轴的正半轴上存在一点P(a,0),过点P可作曲线y=f(x)的三条切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求(x2-
1
2x
9展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:
(Ⅰ)|1-2x|≤3;         
(Ⅱ)1≤|x+1|<5.

查看答案和解析>>

同步练习册答案