精英家教网 > 高中数学 > 题目详情
(文) 定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为
 
考点:指数函数的图像与性质
专题:空间位置关系与距离
分析:根据题意可知当x≥0时,函数的定义域为[0,1];当x≤0时,函数的定义域为[-1,0].所以函数的定义域为[-1,1]此时长度为最大等于1-(-1)=2,而[0,1]或[-1,0]都可为区间的最小长度等于1,所以最大值与最小值的差为1.
解答: 解:当x≥0时,y=2x,因为函数值域为[1,2]即1=20≤2x≤2=21,根据指数函数的增减性得到0≤x≤1;
当x≤0时,y=2-x,因为函数值域为[1,2]即1=20≤2-x≤2=21,根据指数函数的增减性得到0≤-x≤1即-1≤x≤0.
故[a,b]的长度的最大值为1-(-1)=2,最小值为1-0=1或0-(-1)=1,则区间[a,b]的长度的最大值与最小值的差为1
故答案为:1
点评:考查学生理解掌握指数函数定义域和值域的能力,运用指数函数图象增减性解决数学问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数f(x)的图象过点(2,
1
4
),则f(
1
2
)的值为(  )
A、-
1
4
B、
1
4
C、-4
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
1
2
m<(
1
2
n<1,则有(  )
A、0<n<m
B、n<m<0
C、0<m<n
D、m<n<0

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)与双曲线
x2
16
-
y2
4
=1有相同焦点,且经过点(3
2
,2);
(2)已知双曲线的一条渐近线方程是x+2y=0,并经过点(2,2),求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线x2=4y上两定点A、B分别在对称轴左、右两侧,F为抛物线的焦点,且|AF|=2,|BF|=5.
(1)求A、B两点的坐标;
(2)若抛物线在点P处的切线平行于直线AB,求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-1,1)上的单调函数f(x)=
ax+b
x2+1
为奇函数,且f(
1
2
)=
2
5

(Ⅰ)求f(x)的解析式;
(Ⅱ)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校为了解学生的体重发育情况,现从600名高一男生体检评价报告单中随机抽出50名学生的体重(单位:kg)数据进行整理后分成五组,得到频率分布表如下:
分组频数频率
39.5-49.560.12
49.5-59.5a0.12
59.5-69.518c
69.5-79.5bd
79.5-89.520.04
合计50e
(Ⅰ)若抽样中采用了系统抽样的方法,且将这600名男生随机地编号为000,001,002,…,599,试写出第二组第一位学生的编号;
(Ⅱ)求出a,b,c,d的值(直接写出结果),并补全上面的频率分布直方图;
(Ⅲ)若规定,男生的体重结果分为偏瘦、偏胖和正常三个类型,超过69.5属于偏胖,低于49.5属于偏瘦,问这600名男生中体重正常的人数约为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

求不等式a10x+23>a27x-28(a>0且a≠1)中的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax+
1-a
x
-1.
(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)当a=
1
3
时,设函数g(x)=x2-2bx-
5
12
,若对于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案