精英家教网 > 高中数学 > 题目详情

在正方体中,面对角线与体对角线所成角等于
_______________

解析试题分析:根据题意,由于正方体中,面对角线与体对角线所成角利用线面垂直的判定定理和性质定理,那么可知垂直于,故等于
考点:异面直线的所成的角
点评:主要是考查了异面直线的所成的角的求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

如图所在平面,的直径,上一点,,,给出下列结论:①; ②;③; ④平面平面 ⑤是直角三角形
其中正确的命题的序号是              

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

对于四面体ABCD,以下命题中,真命题的序号为       (填上所有真命题的序号)
①若AB=AC,BD=CD,E为BC中点,则平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,则BD⊥AC;
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以A为端点的三条棱所在直线两两垂直,则A在平面BCD内的射影为△BCD的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下列命题中正确的是              (填上你认为所有正确的选项)
①空间中三个平面,若,则
②空间中两个平面,若,直线所成角等于直线所成角, 则
.
③球与棱长为正四面体各面都相切,则该球的表面积为
④三棱锥中,.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在三棱锥A-BCD中,.给出下列命题:
① 分别作△BAD和△CAD的边AD上的高,则这两条高所在直线异面;
② 分别作△BAD和△CAD的边AD上的高,则这两条高相等;


其中正确的命题有__________________,

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图:点在正方体的面对角线上运动,则下列四个命题:
①三棱锥的体积不变;
∥面

④面⊥面.
其中正确的命题的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

正方体中,中点,则与平面所成角的正弦值为           

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在正方体ABCD-A1B1C1D1中,M和N分别为BC、C1C的中点,那么异面直线MN与AC所成的角等于_________。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

以下五个命题中,正确命题的个数是________.
① 不共面的四点中,其中任意三点不共线;
② 若
③ 对于四面体ABCD,任何三个面的面积之和都大于第四个面的面积;
④ 对于四面体ABCD,相对棱AB CD 所在的直线是异面直线;
⑤ 各个面都是三角形的几何体是三棱锥。

查看答案和解析>>

同步练习册答案