| A. | -$\frac{1}{2016}$ | B. | $\frac{1}{2016}$ | C. | -$\frac{1}{2017}$ | D. | $\frac{1}{2017}$ |
分析 a1=-1,an+1=SnSn+1,可得Sn+1-Sn=SnSn+1,变形为$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=-1,再利用等差数列的通项公式即可得出.
解答 解:∵a1=-1,an+1=SnSn+1,
∴Sn+1-Sn=SnSn+1,
∴$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=-1,
∴数列$\{\frac{1}{{S}_{n}}\}$是等差数列,首项与公差都为-1.
∴$\frac{1}{{S}_{n}}$=-1-(n-1)=-n,
∴Sn=-$\frac{1}{n}$.
S2016=-$\frac{1}{2016}$.
故选:A.
点评 本题考查了递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x,y,z∈R+,则$\frac{x}{y}$+$\frac{y}{z}$+$\frac{z}{x}$≥3 | B. | $\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$≥2 | ||
| C. | 若a,b∈R,则$\frac{b}{a}$+$\frac{a}{b}$≥2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=2 | D. | a∈R+,(1+a)(1+$\frac{1}{a}$)≥4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等边三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1}⊆N | B. | ∅∈{x∈R|x2+1=0} | C. | {2,1}={x|x2-3x+2=0} | D. | a∈{a,b,c} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com