精英家教网 > 高中数学 > 题目详情
15.设扇形的圆心角α=60°,半径R=100cm,如果R不变,α减少30′,问面积大约改变了多少?又如果α不变,R增加1cm,问面积大约改变了多少?

分析 由已知利用扇形的面积公式即可计算求解.

解答 解:由已知可得:扇形的圆心角大小为α=$\frac{π}{3}$,半径为R=100cm,
则扇形的面积为S=$\frac{1}{2}$R2α=$\frac{1}{2}×10{0}^{2}×\frac{π}{3}$=$\frac{5000π}{3}$,
如果R不变,α减少30′,可得:△S1=$\frac{1}{2}×$△αR2=$\frac{1}{2}×\frac{1}{2}×$$\frac{π}{180}$×10000=$\frac{125π}{9}$≈43.6332,
如果α不变,R增加1cm,可得:△S2=$\frac{1}{2}×$α(1012-1002)=$\frac{1}{2}×$$\frac{π}{3}$×201=$\frac{201π}{6}$≈105.2434,
∴如果R不变,A减小30分,面积大约减少43.6332,如果A不变,R加1CM,面积大约增加105.2434.

点评 本题主要考查了扇形的面积公式的应用,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.求(3$\sqrt{x}$+$\frac{1}{\sqrt{x}}$)4的展开式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)=ex-1,当x>-1时,证明:f(x)>$\frac{2{x}^{2}+x-1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某四棱锥的三视图如图所示,该四棱锥外接球的表面积为(  )
A.72πB.100πC.108πD.72$\sqrt{2}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα=-$\frac{8}{17}$,且角α是第三象限的角,求cosα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P是抛物线x2=4y上的动点,点P在x轴上的射影是Q,点A(8,7),则|PA|+|PQ|的最小值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=-x2+3x-a,g(x)=2x-x2,若f[g(x)]≥0对x∈[0,1]恒成立,则实数a的范围是(  )
A.(-∞,2]B.(-∞,e]C.(-∞,ln2]D.[0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆锥曲线C:$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α是参数)和定点A(0,$\sqrt{3}$),F1,F2分别是曲线C的左、右焦点.
(1)以原点为极点,x轴的正半轴为极轴建立坐标系,求直线AF2的极坐标系方程.
(2)若P是曲线C上的动点,求|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)的定义域为D,函数g(x)的定义域为E.规定:函数$h(x)=\left\{\begin{array}{l}f(x)g(x),x∈D且x∈E\\ f(x),x∈D且x∉E\\ g(x),x∈E且x∉D\end{array}\right.$
(Ⅰ)若函数$f(x)=\frac{1}{x-1},g(x)={x^2}$,写出函数h(x)的解析式;
(Ⅱ)判断问题(Ⅰ)中函数h(x)在(1,+∞)上的单调性;
(Ⅲ)若g(x)=f(x+α),其中α是常数,且α∈(0,π),请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并给予证明.

查看答案和解析>>

同步练习册答案