精英家教网 > 高中数学 > 题目详情
3.若P为抛物线y2=2x任意一点,F为焦点,若A(3,2),则|PA|+|PF|的最小值为$\frac{7}{2}$.

分析 利用抛物线的定义,将点P到其焦点的距离转化为它到其准线的距离即可.

解答 解:根据题意,作图如下,
设点P在其准线x=-$\frac{1}{2}$上的射影为M,有抛物线的定义得:|PF|=|PM|,
∴欲使|PA|+|PF|取得最小值,就是使|PA|+|PM|最小,
∵|PA|+|PM|≥|AM|=$\frac{7}{2}$(当且仅当M,P,A三点共线时取“=”),
∴|PA|+|PF|取得最小值$\frac{7}{2}$,
故答案为$\frac{7}{2}$.

点评 本题考查抛物线的简单性质,将点P到其焦点的距离转化为它到其准线的距离是关键,考查转化思想的灵活应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图所示,四棱锥P-ABCD的底面为等腰梯形,AB∥DC,AB=2AD,AD=BC=1,若PA⊥平面ABCD,∠ABC=60°
(1)求证:平面PAC⊥平面PBC;
(2)若点D到平面PBC的距离为$\frac{{\sqrt{3}}}{4}$,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得500的所有正约数之和为1092.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,公差d≠0,且S3=6,a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{a_n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A为椭圆$\frac{x^2}{4}+{y^2}$=1上的点,过A作AB⊥x轴,垂足为B,延长BA到C使得|AB|=|AC|.
(1)求点C的轨迹方程;
(2)若直线l过点D(2,3)且与点C的轨迹只有一个公共点,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a=log23,$b=\frac{4}{3}$,c=log34,则a,b,c的大小关系为(  )
A.b<a<cB.c<a<bC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若A={1,2,3},B={1,3,4},则A∩B=(  )
A.{1,2,3,4}B.1,3C.1,2,3,4D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线ax+y-3=0与圆x2+(y-1)2=4的位置关系是(  )
A.相交B.相切或相交C.相离D.相切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,b,c分别是△ABC中角A,B,C的对边,G是△ABC的三条边上中线的交点,若$\overrightarrow{GA}+(a+b)\overrightarrow{GB}+2c\overrightarrow{GC}$=$\overrightarrow 0$,且$\frac{1}{a}+\frac{2}{b}$≥cos2x-msinx(x∈R)恒成立,则实数m的取值范围为[-4-2$\sqrt{2}$,4+2$\sqrt{2}$].

查看答案和解析>>

同步练习册答案