分析 由已知利用倍角公式,降幂公式化简可得f(x)=$\frac{1}{2}$sin2x,进而利用周期公式即可计算得解.
解答 解:∵f(x)=sinx-4sin3$\frac{x}{2}$cos$\frac{x}{2}$=sinx-2sin2$\frac{x}{2}$(2sin$\frac{x}{2}$cos$\frac{x}{2}$)=sinx-2sin2$\frac{x}{2}$sinx=sinx-(1-cosx)sinx=sinxcosx=$\frac{1}{2}$sin2x,
∴最小正周期T=$\frac{2π}{2}$=π.
故答案为:π.
点评 本题主要考查了倍角公式,降幂公式,三角函数的周期性及其求法,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | a>c>b | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,0] | B. | [-2,0) | C. | (-2,0) | D. | [-2,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com