精英家教网 > 高中数学 > 题目详情
4.为了了解某地区的1003名学生的数学,打算从中抽取一个容量为50的样本,现用系统抽样的方法,需要从总体中剔除3个个体,在整个过程中,每个个体被剔除的概率和每个个体被抽取的概率分别为(  )
A.$\frac{3}{1003}$,$\frac{1}{20}$B.$\frac{1000}{1003}$,$\frac{1}{20}$C.$\frac{3}{1003}$,$\frac{50}{1003}$D.$\frac{1000}{1003}$,$\frac{50}{1003}$

分析 根据统抽样方法的公平性即抽样过程中每个个体被抽到的概率是相等的,分析题意,可得答案.

解答 解:根据题意,抽样过程中每个个体被剔除的概率是相等的,即为$\frac{3}{1003}$,
每个个体抽取概率为$\frac{50}{1003}$,
故选:C.

点评 本题考查系统抽样方法,注意抽样中的公平性即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知sin($α+\frac{π}{6}$)=$\frac{4}{5}$,则sin($α+\frac{7π}{6}$)的值是(  )
A.-$\frac{2\sqrt{3}}{5}$B.$\frac{2\sqrt{3}}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$=22n-1-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)是定义在R上的偶函数,在(-∞,0]上是增函数,且f(1)=0,则使f(x)<0的x的取值范围是(  )
A.(-∞,-1)B.(-1,1)C.(-∞,-1)∪(1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.命题p:A={x|x2+(m+2)x+1=0,x∈R}且A∩R+=∅;命题q:α:|x-$\frac{3}{2}$|<$\frac{7}{2}$,β:m+1<x<2m-1,α是β的必要非充分条件.
(1)若命题p为真命题,求实数m的取值范围;
(2)若命题p和命题q中有且只有一个是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式x2(x+1)≤0的解集为{x|x=0或x≤-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若点A(a,b)(a>0,b>0)在直线2x+y-1=0上,则$\frac{1}{a}$+$\frac{2}{b}$的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知cosθ=$\frac{7}{25}$(0<θ<$\frac{π}{2}$)
(1)求tanθ的值;                          
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ}}{{\sqrt{2}sin({θ+\frac{π}{4}})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列4个命题中:
①$α∈(0,\frac{π}{2})$时,sinα+cosα>1;
②$α∈(\frac{3π}{4},π)$时,sinα<|cosα|;
③$α∈(\frac{5π}{4},\frac{3π}{2})$时,sinα>cosα.
④$α∈(\frac{3π}{2},\frac{7π}{4})$时,sinα+cosα>0.
其中判断正确的序号是①②(将正确的都填上).

查看答案和解析>>

同步练习册答案