精英家教网 > 高中数学 > 题目详情
13.已知cosθ=$\frac{7}{25}$(0<θ<$\frac{π}{2}$)
(1)求tanθ的值;                          
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ}}{{\sqrt{2}sin({θ+\frac{π}{4}})}}$的值.

分析 (1)由已知利用同角三角函数关系式先求sinθ,进而可求tanθ的值.
(2)利用三角函数恒等变换的应用化简所求,根据(1)即可计算求值.

解答 解:(1)∵cosθ=$\frac{7}{25}$(0<θ<$\frac{π}{2}$),
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{24}{25}$,tan$θ=\frac{sinθ}{cosθ}$=$\frac{24}{7}$.
(2)$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ}}{{\sqrt{2}sin({θ+\frac{π}{4}})}}$=$\frac{1+cosθ-sinθ}{sinθ+cosθ}$=$\frac{1+\frac{7}{25}-\frac{24}{25}}{\frac{24}{25}+\frac{7}{25}}$=$\frac{8}{31}$.

点评 本题主要考查了同角三角函数基本关系式,降幂公式,两角和的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.若一条直线同时和两个曲线相切我们称此直线为两曲线的公切线,已知f(x)=x2,g(x)=-x2+2x+a
(1)若f(x)与g(x)只有一条公切线,求实数a值;
(2)若f(x)与g(x)有两条公切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为了了解某地区的1003名学生的数学,打算从中抽取一个容量为50的样本,现用系统抽样的方法,需要从总体中剔除3个个体,在整个过程中,每个个体被剔除的概率和每个个体被抽取的概率分别为(  )
A.$\frac{3}{1003}$,$\frac{1}{20}$B.$\frac{1000}{1003}$,$\frac{1}{20}$C.$\frac{3}{1003}$,$\frac{50}{1003}$D.$\frac{1000}{1003}$,$\frac{50}{1003}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等比数列{an}的前n项和为Sn,且Sm=x,S2m=y,S3m=z,则(  )
A.x+y=zB.y2=x•zC.x2+y2=xy+xzD.2y=x+z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一艘轮船从A出发,沿南偏东70°的方向航行40海里后到达海岛B,然后从B出发,沿北偏东35°的方向航行了40$\sqrt{2}$海里到达海岛C.如果下次航行直接从A出发到C,此船航行的方向和路程(海里)分别为(  )
A.北偏东80°,20($\sqrt{6}$+$\sqrt{2}$)B.北偏东65°,20($\sqrt{3}$+2)C.北偏东65°,20($\sqrt{6}$+$\sqrt{2}$)D.北偏东80°,20($\sqrt{3}$+2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若实数x,y满足不等式组:$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}}\right.$,则该约束条件所围成的平面区域的面积是(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数x,y满足约束条件$\left\{\begin{array}{l}x≤y+4\\ 2y≤x+4\\ 2x+y≥11\end{array}\right.$,则z=x-3y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.命题“?x∈R,x2+2x+5>0”的否定是?x0∈R,x02+2x0+5≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,若$\frac{S_n}{T_n}$=$\frac{n+3}{2n+1}$,则$\frac{a_8}{b_8}$=$\frac{18}{31}$.

查看答案和解析>>

同步练习册答案