分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答 解:由z=x-3y得y=$\frac{1}{3}x-\frac{z}{3}$,![]()
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{3}x-\frac{z}{3}$,
由图象可知当直线y=$\frac{1}{3}x-\frac{z}{3}$经过点C时,直线y=$\frac{1}{3}x-\frac{z}{3}$的截距最小,
此时z最大,
由$\left\{\begin{array}{l}{x=y+4}\\{2x+y=11}\end{array}\right.$,得$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$,即C(5,1).
代入目标函数z=x-3y,
得z=5-3×1=2,
故答案为:2.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x≤1} | B. | {x|-1≤x<0} | C. | {x|0≤x≤2} | D. | {x|0≤x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{1}{4},2}]$ | B. | $[{-\frac{1}{4},2})$ | C. | $[{-2,\frac{1}{4}})$ | D. | $({-2,\frac{1}{4}}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com