精英家教网 > 高中数学 > 题目详情
16.若点A(a,b)(a>0,b>0)在直线2x+y-1=0上,则$\frac{1}{a}$+$\frac{2}{b}$的最小值是8.

分析 利用“乘1法”和基本不等式即可得出.

解答 解:若点A(a,b)(a>0,b>0)在直线2x+y-1=0上,
则2a+b=1,
则($\frac{1}{a}$+$\frac{2}{b}$)(2a+b)=4+$\frac{b}{a}$+$\frac{4a}{b}$≥4+2$\sqrt{\frac{b}{a}•\frac{4a}{b}}$=8,
当且仅当$\frac{b}{a}$=$\frac{4a}{b}$即b=2a=$\frac{1}{2}$时“=”成立,
故答案为:8.

点评 本题考查了“乘1法”和基本不等式,考查了推理能力和计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知角α的终边上的一点P(-$\sqrt{3}$,$\sqrt{5}$),则cosα的值为(  )
A.-$\frac{\sqrt{15}}{3}$B.-$\frac{\sqrt{6}}{4}$C.$\frac{\sqrt{6}}{4}$D.$\frac{\sqrt{10}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出如下定义:对函数y=f(x),x∈D.若存在实常数C,对任意的x1∈D,存在唯一的x2∈D,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=C成立,则称函数y=f(x)为“和谐函数”,常数C为函数y=f(x)的“和谐数”,若函数g(x)=lnx,x∈[e2,e3]为“和谐函数”,则其可能的“和谐数”为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为了了解某地区的1003名学生的数学,打算从中抽取一个容量为50的样本,现用系统抽样的方法,需要从总体中剔除3个个体,在整个过程中,每个个体被剔除的概率和每个个体被抽取的概率分别为(  )
A.$\frac{3}{1003}$,$\frac{1}{20}$B.$\frac{1000}{1003}$,$\frac{1}{20}$C.$\frac{3}{1003}$,$\frac{50}{1003}$D.$\frac{1000}{1003}$,$\frac{50}{1003}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$y={log_{0.5}}({x^2}-x-2)$的单调递增区间是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等比数列{an}的前n项和为Sn,且Sm=x,S2m=y,S3m=z,则(  )
A.x+y=zB.y2=x•zC.x2+y2=xy+xzD.2y=x+z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一艘轮船从A出发,沿南偏东70°的方向航行40海里后到达海岛B,然后从B出发,沿北偏东35°的方向航行了40$\sqrt{2}$海里到达海岛C.如果下次航行直接从A出发到C,此船航行的方向和路程(海里)分别为(  )
A.北偏东80°,20($\sqrt{6}$+$\sqrt{2}$)B.北偏东65°,20($\sqrt{3}$+2)C.北偏东65°,20($\sqrt{6}$+$\sqrt{2}$)D.北偏东80°,20($\sqrt{3}$+2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数x,y满足约束条件$\left\{\begin{array}{l}x≤y+4\\ 2y≤x+4\\ 2x+y≥11\end{array}\right.$,则z=x-3y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则(  )
A.B2=ACB.A+C=2BC.B(B-A)=A(C-A)D.B(B-A)=C(C-A)

查看答案和解析>>

同步练习册答案