精英家教网 > 高中数学 > 题目详情
(13分)如图,棱锥PABCD的底面ABCD是矩形,PA⊥平面ABCDPA=AD=2,BD=
(1)求点C到平面PBD的距离;
(2)在线段上是否存在一点,使与平面所成的角的正弦值为,若存在,
指出点的位置,若不存在,说明理由.
(1)CE=AF=
(2)中,,CD=2,DQ=,即Q是PD的中点。
(1)∵ABCD是矩形,AD=2,BD= ∴AB=2
∵BD⊥平面PAC,∴面PAC⊥面PBD,作CE⊥PO于E
∴CE⊥面PBD,CE=AF=……6分
(2)设点Q在线段PD上符合要求,∵CE⊥面PBD,
∴∠CQE是与平面所成的角……8分
,又CE=,∴……10分
中,,CD=2,∴DQ=,即Q是PD的中点。……13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知正三棱柱ABCA1B1C1的底面边长是2,DCC1的中点,直线AD与侧面BB1C1C所成的角是45°.
(I)求二面角ABDC的大小;
(II)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直三棱柱中,分别为棱的中点,为棱上的点,二面角
(I)证明:
(II)求的长,并求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)(注意:在试题卷上作答无效)

如图,直角△BCD所在的平面垂直于正△ABC所在的平面,
PA⊥平面ABC,DB的中点,
(Ⅰ)证明:AEBC;      
(Ⅱ)若点是线段上的动点,设平面与平面所成的平面角大小为,当内取值时,求直线PF与平面DBC所成的角的范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分12分)如图,已知四棱锥,底面为菱形,⊥平面分别是的中点。
(Ⅰ)证明:
(Ⅱ)若上的动点,与平面所成最大角的正切值为,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
三棱柱中,侧棱与底面垂直,分别是的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,E、F分别是正方体的棱A1A,C1C1的中点,则四边形BFD1E在该正方体的面内的射影可能是                .(要求:把可能的图形的序号都填上)
                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱锥被平行于底面的平面所截,当截面分别平分侧棱,侧面积时所得截面相应面积分别为,则的大小关系为( )
A.B.C.D.无法判断

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,两个正方形所在平面互相垂直,设分别是的中点,那么① ;② ;③ ;④ 异面
其中正确结论的序号是__________.

查看答案和解析>>

同步练习册答案