精英家教网 > 高中数学 > 题目详情
6.给出下列五个命题:
①函数$y=2sin(2x-\frac{π}{3})$的一条对称轴是x=$\frac{5π}{12}$;
②函数y=tanx的图象关于点($\frac{π}{2}$,0)对称;
③存在实数x,使sinx+cosx=2;
④若$sin(2{x_1}-\frac{π}{4})=sin(2{x_2}-\frac{π}{4})$,则x1-x2=kπ,其中k∈Z
⑤函数y=cos($\frac{2}{3}$x+$\frac{π}{2}$)是奇函数;
以上五个命题中正确的有①②⑤(填写正确命题前面的序号)

分析 把x=$\frac{5π}{12}$代入函数得  y=1,为最大值,故①正确.
由正切函数的图象特征可得($\frac{π}{2}$,0)是函数y=tanx的图象的对称中心,故②正确.
利用辅助角公式进行化简即可得③是不正确的.
若 $sin(2{x}_{1}-\frac{π}{4})=sin(2{x}_{2}-\frac{π}{4})$,则有 2x1-$\frac{π}{4}$=2kπ+2x2-$\frac{π}{4}$,或 2x1-$\frac{π}{4}$=2kπ+π-(2x2-$\frac{π}{4}$),k∈z,
即 x1-x2=kπ,或x1+x2=kπ+$\frac{3π}{4}$,故④不正确.
先化简函数y=cos($\frac{2}{3}$x+$\frac{π}{2}$)=-sin$\frac{2}{3}$x进行判断即可.

解答 解:①把x=$\frac{5π}{12}$代入函数得  y=1,为最大值,故①正确.
②结合函数y=tanx的图象可得点($\frac{π}{2}$,0)是函数y=tanx的图象的一个对称中心,故②正确.
③sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[$-\sqrt{2},\sqrt{2}$],∵2>$\sqrt{2}$,∴存在实数x,使sinx+cosx=2错误,故③错误,
④若 $sin(2{x}_{1}-\frac{π}{4})=sin(2{x}_{2}-\frac{π}{4})$,则有  2x1-$\frac{π}{4}$=2kπ+2x2-$\frac{π}{4}$,或 2x1-$\frac{π}{4}$=2kπ+π-(2x2-$\frac{π}{4}$),k∈z,
∴x1-x2=kπ,或x1+x2=kπ+$\frac{3π}{4}$,k∈z,故④不正确.
⑤函数y=cos($\frac{2}{3}$x+$\frac{π}{2}$)=-sin$\frac{2}{3}$x是奇函数,故⑤正确;
故答案为:①②⑤

点评 本题考查与三角函数有关的命题的真假判断,要求熟练掌握正弦函数的单调性、奇偶性、周期性、对称性,掌握正弦函数的图象和性质,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知y=xex+cosx,则其导数y′=ex+xex-sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列描述不是解决问题的算法的是(  )
A.从中山到北京先坐汽车,再坐火车
B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、化系数为1
C.方程x2-4x+3=0有两个不等的实根
D.解不等式ax+3>0时,第一步移项,第二步讨论

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.要得到函数$y=3sin(2x+\frac{π}{4})$的图象,只需将函数y=3sin2x的图象向左平移$\frac{π}{8}$个单位得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.正方体ABCD-A1B1C1D1中,异面直线B1C与C1D所成的角的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率e=$\sqrt{3}$,且b=$\sqrt{2}$.
(Ⅰ)求双曲线C的方程;
(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且$\overrightarrow{PE}$•$\overrightarrow{PF}$=0,求△PEF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$的弦被点(4,2)平分,则此弦所在的直线方程是(  )
A.x-2y=0B.x+2y=4C.2x+3y=14D.x+2y=8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从某学校高三年级共800名男生中随机抽取50名测量身高,据测量被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165);…第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.
(I)求第六组、第七组的频率并补充完整频率分布直方图;
(Ⅱ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.

查看答案和解析>>

同步练习册答案