精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=2x2+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)若g(x)=f(x)-4x+2存在两个极值点,且x0是函数g(x)的极小值点,求证:$g({x_0})>\frac{1}{2}-ln2$.

分析 (1)对函数求导,利用导函数与函数单调性的关系即可求解.
(2)利用条件x0是函数f(x)的极值点,确定a的数值,然后证明:$g({x_0})>\frac{1}{2}-ln2$.

解答 解:函数的定义域为(0,+∞),
(1)$f'(x)=4x+\frac{a}{x}=\frac{{4{x^2}+a}}{x}$,
当a≥0,f'(x)>0恒成立,
∴函数f(x)在(0,+∞)上单调递增;
当a<0时,令f'(x)=0,得$x=\frac{{\sqrt{-a}}}{2}$或$x=-\frac{{\sqrt{-a}}}{2}$(不合题意,舍去),
则当$x∈({0,\frac{{\sqrt{-a}}}{2}})$时,f'(x)<0,函数f(x)在$({0,\frac{{\sqrt{-a}}}{2}})$上单调递减,
当$x∈({\frac{{\sqrt{-a}}}{2},+∞})$时,f'(x)>0,函数f(x)在$({\frac{{\sqrt{-a}}}{2},+∞})$上单调递增.
(2)∵g(x)=2x2-4x+2+alnx,
∴$g'(x)=4x-4+\frac{a}{x}=\frac{{4{x^2}-4x+a}}{x}$,
∵函数g(x)存在两个极值点,设两个极值点为x1,x0
∴x1,x0是方程4x2-4x+a=0的两根,
∴△=16-16a>0,0<a<1,且x1+x0=1,
∵函数y=4x2-4x+a开口向上,与x轴交于两点,x0是函数g(x)的极小值点,
∴x1<x0,从而$\frac{1}{2}<{x_0}<1$,
由$4x_0^2-4{x_0}+a=0$,得$a=-4x_0^2+4$,x0∈(0,1),
$g({x_0})=2{({{x_0}-1})^2}+({4{x_0}-4x_0^2})ln{x_0}$,
设$h(t)=2{({t-1})^2}+({4t-4{t^2}})lnt({\frac{1}{2}<t<1})$,
∵h'(t)=4(1-2t)lnt>0,
∴h(t)在$({\frac{1}{2},1})$上递增,
∴$h(t)>h({\frac{1}{2}})=\frac{1}{2}-ln2$,
∴$g({x_0})>\frac{1}{2}-ln2$.

点评 本题的考点是利用导数研究函数的单调性,以及函数的极值问题.对于参数问题要注意进行分类讨论,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知过点P(4,3)的光线,经x轴上一点A反射后的光线过点Q(0,5).则点A的坐标为($\frac{5}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于函数y=f(x),部分x与y的对应关系如表:
x123456
y315624
数列{an}满足a1=1,且对任意n∈N*,点(an,an+1)都在函数y=f(x)的图象上,则a1+a2+a3+…+a2016的值为5544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{10}{3}$B.$\frac{16}{3}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若曲线y=ln(x+a)的一条切线为y=ex+b,其中a,b为正实数,则a+$\frac{e}{b+2}$的取值范围是(  )
A.$({\frac{2}{e}+\frac{e}{2},+∞})$B.[e,+∞)C.[2,+∞)D.[2,e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.记max{m,n}表示m,n中的最大值,如max$\left\{{3,\sqrt{10}}\right\}=\sqrt{10}$.已知函数f(x)=max{x2-1,2lnx},g(x)=max{x+lnx,ax2+x}.
(1)求函数f(x)在$[{\frac{1}{2},1}]$上的值域;
(2)试探讨是否存在实数a,使得g(x)<$\frac{3}{2}$x+4a对x∈(1,+∞)恒成立?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}是各项均为正值的等比数列,且a4a12+a3a5=15,a4a8=5,则a4+a8=(  )
A.15B.$\sqrt{5}$C.5D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对任意实数a,b定义运算“⊙”:a⊙$b=\left\{\begin{array}{l}{a,a-b≤2}\\{b,a-b>2}\end{array}\right.$,设f(x)=3x+1⊙(1-x),若函数f(x)与函数g(x)=x2-6x在区间(m,m+1)上均为减函数,则实数m的取值范围是(  )
A.[-1,2]B.(0,3]C.[0,2]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a=(m,2)$,$\overrightarrow b=(-1,n)$,(n>0)且$\overrightarrow a•\overrightarrow b=0$,点P(m,n)在圆x2+y2=5上,则|2$\overrightarrow a+\overrightarrow b|$等于$\sqrt{34}$.

查看答案和解析>>

同步练习册答案