精英家教网 > 高中数学 > 题目详情
6.已知数列{an}是各项均为正值的等比数列,且a4a12+a3a5=15,a4a8=5,则a4+a8=(  )
A.15B.$\sqrt{5}$C.5D.25

分析 推导出a4a8=5,${{a}_{8}}^{2}+{{a}_{4}}^{2}$=15,a4>0,a8>0,由此能求出a4+a8

解答 解:∵数列{an}是各项均为正值的等比数列,且a4a12+a3a5=15,a4a8=5,
∴${{a}_{8}}^{2}+{{a}_{4}}^{2}$=15,a4>0,a8>0,
∴a4+a8=$\sqrt{({a}_{4}+{a}_{8})^{2}}$=$\sqrt{{{a}_{4}}^{2}+{{a}_{8}}^{2}+2{a}_{4}{a}_{8}}$=$\sqrt{15+10}$=5.
故选:C.

点评 本题考查等比数列的中两项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\left\{{\begin{array}{l}{x-2,x≥10}\\{f[f(x+6)],x<10}\end{array}}$则f(6)=(  )
A.10B.-10C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.乒乓球是我国的国球,在2016年巴西奥运会上尽领风骚,包揽该项目全部金牌,现某市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时6元;乙家按月计费,一个月中20小时以内(含20小时)每张球台90元,超过20小时的部分,每张球台每小时2元,某公司准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于12小时,也不超过30小时.
(1)设在甲家租一张球台开展活动x小时收费为f(x)元(12≤x≤30),在乙家租一张球台开展活动x小时的收费为g(x)元(12≤x30),试求f(x)与g(x)的解析式;
(2)选择哪家比较合算?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2x2+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)若g(x)=f(x)-4x+2存在两个极值点,且x0是函数g(x)的极小值点,求证:$g({x_0})>\frac{1}{2}-ln2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$\int_{-1}^1{({|x|+sinx})}$dx=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{m}{x}+lnx$,g(x)=x3+x2-x.
(Ⅰ)若m=3,求f(x)的极值;
(Ⅱ)若对于任意的s,$t∈[{\frac{1}{2}\;,\;\;2}]$,都有$f(s)≥\frac{1}{10}g(t)$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数z=(2-ai)(1+i)的实部为1,则实数a的值为(  )
A.1B.-1C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x2-4x-12<0},B={x|2x>log${\;}_{\sqrt{3}}$3},则A∩B等于(  )
A.($\frac{3}{2},6$)B.($\frac{3}{2},2$)C.(1,6)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,在(0,2)上为增函数的是(  )
A.y=-3x+2B.y=$\frac{3}{x}$C.y=x2-4x+5D.y=3x2+8x-10

查看答案和解析>>

同步练习册答案