精英家教网 > 高中数学 > 题目详情
16.6个人坐到9个座位的一排位置上,则恰有3个空位且3个空位互不相邻的概率为$\frac{5}{12}$.

分析 基本事件总数n=${A}_{9}^{6}$,恰有3个空位且3个空位互不相邻包含的基本事件个数m=${A}_{6}^{6}{C}_{7}^{3}$,由此能求出恰有3个空位且3个空位互不相邻的概率.

解答 解:6个人坐到9个座位的一排位置上,
基本事件总数n=${A}_{9}^{6}$,
恰有3个空位且3个空位互不相邻包含的基本事件个数m=${A}_{6}^{6}{C}_{7}^{3}$,
∴恰有3个空位且3个空位互不相邻的概率p=$\frac{m}{n}=\frac{{A}_{6}^{6}{C}_{7}^{3}}{{A}_{9}^{6}}$=$\frac{5}{12}$.
故答案为:$\frac{5}{12}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.现有2个男生,3个女生和1个老师共六人站成一排照相,若两端站男生,3个女生中有且仅有两人相邻,则不同的站法种数是24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$tan({\frac{π}{4}-α})=3$,则tanα等于(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出如下列联表(公式见卷首)
患心脏病患其它病合  计
高血压201030
不高血压305080
合  计5060110
参照公式,得到的正确结论是(  )
A.有99%以上的把握认为“高血压与患心脏病无关”
B.有99%以上的把握认为“高血压与患心脏病有关”
C.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”
D.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若实数a,b,c∈(0,1)且10a+9b=9,a+b+c=1,则当$\frac{10}{a}+\frac{1}{9b}$取最小值时,c的值为(  )
A.$\frac{5}{11}$B.$\frac{2}{11}$C.$\frac{1}{11}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在ABC中,角A,B,C所对的边边长分别是a,b,c,若(a2+c2-b2)tanB=$\sqrt{2}$ac.则角B的值为$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
                            性别
是否需要志愿者
需要4030
不需要160270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)请根据上面的数据分析该地区的老年人需要志愿者提供帮助与性别有关吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人.
晕机不晕机总计
男乘客
女乘客
总计
(1)根据以上数据完成右边 2×2列联表;
(2)试判断晕机是否与性别有关?
(参考数据:K2≥2.706时,有90%的把握判定变量A,B有关联;K2≥3.841时,有95%的把握判定变量A,B有关联;K2≥6.635时,有99%的把握判定变量A,B有关联.参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={1,2,3,4,5},B={1,3},则A∩B={1,3}.

查看答案和解析>>

同步练习册答案