精英家教网 > 高中数学 > 题目详情
1.在ABC中,角A,B,C所对的边边长分别是a,b,c,若(a2+c2-b2)tanB=$\sqrt{2}$ac.则角B的值为$\frac{π}{4}$或$\frac{3π}{4}$.

分析 由余弦定理化简条件得2ac•cosB•tanB=ac,再根据同角三角函数的基本关系得sinB,从而求得角B的值.

解答 解:∵在△ABC中,角A、B、C的对边分别为a、b、c,(a2+c2-b2)tanB=$\sqrt{2}$ac,
∴由余弦定理可得:2ac•cosB•tanB=$\sqrt{2}$ac,
∴sinB=$\frac{\sqrt{2}}{2}$,可得:B=$\frac{π}{4}$ 或 B=$\frac{3π}{4}$,
故答案为:$\frac{π}{4}$ 或 $\frac{3π}{4}$.

点评 本题考查余弦定理的应用,同角三角函数的基本关系,以及根据三角函数值及角的范围求角的大小,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)是定义在R上的偶函数,且f(x)+f(2-x)=4,设f(x)的导函数为f′(x),?x∈R总有f′(x)<f(x)成立,则不等式f(x)>2ex+3的解集为{x丨x<-3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.233除以7的余数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.20名学生某次数学成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求a的值,并估计这20名学生的平均成绩;
(Ⅱ)从这20名同学中任选3人参加某项活动,求恰好有1人的成绩在[50,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.6个人坐到9个座位的一排位置上,则恰有3个空位且3个空位互不相邻的概率为$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在[0,2π]上与-$\frac{π}{7}$终边相同的角是(  )
A.$\frac{π}{7}$B.$\frac{6π}{7}$C.$\frac{8π}{7}$D.$\frac{13π}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点P(x,y)在$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数)上,则x+y的最大值为(  )
A.3+$\sqrt{5}$B.5+$\sqrt{5}$C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在直三棱柱ABC-A'B'C'中,AB=AC,D、E分别是棱BC、CC'上的点(点D不同于点C),且AD⊥BC,F为B'C'的中点.求证:
(Ⅰ)平面ADE⊥平面BCC'B';     
(Ⅱ)直线A'F∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|1≤x≤2},B={x|m≤x≤m+3}.
(1)当m=2时,求A∪B;
(2)若A⊆B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案