精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)是定义在R上的偶函数,且f(x)+f(2-x)=4,设f(x)的导函数为f′(x),?x∈R总有f′(x)<f(x)成立,则不等式f(x)>2ex+3的解集为{x丨x<-3}.

分析 由题意可知:根据函数的奇偶性求得f(x)=f(x+4),则函数f(x)为周期为4的函数,f(3)=f(-1),即可求得f(-3)=f(3)=2,构造辅助函数,求导,由题意可知:g(x)=$\frac{f(x)}{{e}^{x}}$单调递减,则不等式转化成$\frac{f(x)}{{e}^{x}}$>2e3=$\frac{f(-3)}{{e}^{-3}}$,根据函数的单调性即可求得不等式的解集.

解答 解:f(x)+f(2-x)=4,则f(-1)+f(3)=4,
由函数f(x)为偶函数,则f(-x)=f(x),
则f(-x)+f(2-x)=4,
∴f(x)+f(2+x)=4,$\left\{\begin{array}{l}{f(x)+f(x+2)=4}\\{f(x+2)+f(x+4)=4}\end{array}\right.$,
∴f(x)=f(x+4),
∴函数f(x)为周期为4的函数,f(3)=f(-1),
∴f(-3)=f(3)=2,
设g(x)=$\frac{f(x)}{{e}^{x}}$,g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
由?x∈R总有f′(x)<f(x)成立,
∴g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0恒成立,
∴g(x)=$\frac{f(x)}{{e}^{x}}$单调递减,
f(x)>2ex+3,则$\frac{f(x)}{{e}^{x}}$>2e3=$\frac{f(-3)}{{e}^{-3}}$,
∴x<-3,
∴不等式f(x)>2ex+3的解集{x丨x<-3},
故答案为:{x丨x<-3}.

点评 本题主要考查不等式的求解,根据函数奇偶性和对称性求出函数的周期性以及构造函数,利用导数研究函数的单调性是解决本题的关键,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派出一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场),由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中率只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.
(1)定义事件A为“一班第三位同学没能出场罚球”,求事件A发生的概率;
(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一点球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某队队员射入点球且另一队队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛.若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方用过抽签决定胜负,以随机变量X记录双方进行一对一点球决胜的轮数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:
晚上白天合计
男婴243155
女婴82634
合计325789
你认为婴儿的性别与出生时间有关系的把握为(  )
A.80%B.90%C.95%D.99%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分为不及格,求:
(1)成绩不及格的学生人数占总人数的比例;
(2)成绩在80~90分内的学生人数占总人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.现有2个男生,3个女生和1个老师共六人站成一排照相,若两端站男生,3个女生中有且仅有两人相邻,则不同的站法种数是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若$cos(\frac{π}{4}-α)=-\frac{4}{5}$,则sin2α=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z满足,(z-2i)(2-i)=5,则$\overline{z}$=(  )
A.2+3iB.2-3iC.3+2iD.3-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则以下能够推出α∥β的是(  )
A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在ABC中,角A,B,C所对的边边长分别是a,b,c,若(a2+c2-b2)tanB=$\sqrt{2}$ac.则角B的值为$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

同步练习册答案