精英家教网 > 高中数学 > 题目详情
11.已知10a=2,10b=3,则log312=$\frac{2a+b}{b}$.

分析 由已知得a=lg2,b=lg3,使用换底公式将log312化成以10为底的对数进行化简.

解答 解:∵10a=2,10b=3,∴a=lg2,b=lg3.
∴log312=$\frac{lg12}{lg3}$=$\frac{lg3+2lg2}{lg3}$=$\frac{2a+b}{b}$.
故答案为:$\frac{2a+b}{b}$.

点评 本题考查了对数的运算性质,换底公式,属于基础题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知直线ln:nx+2ny=4n+1(n=1,2,…)与x轴、y轴的交点分别为An、Bn,O为坐标原点,设△OAnBn的面积为Sn(n=1,2,…),则$\lim_{n→∞}{S_n}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overline{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$|$\overrightarrow{a}$-$\overrightarrow{b}$|.求:
(1)$\overrightarrow{a}$•(2$\overrightarrow{a}$-4$\overrightarrow{b}$);
(2)|3$\overrightarrow{a}$-2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC的三内角A、B、C所对边的长分别为a,b,c,若S△ABC=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{4}$,则角A的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知U={x|x是三角形},A={x|x是等边三角形},求∁UA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线l的倾斜角的取值范围为[$\frac{π}{3}$,$\frac{3π}{4}$],则直线l的斜率的取值范围为(-∞,-1]∪[$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线x-my-1-m=0与圆x2+y2=1相切,则实数m的值为(  )
A.l或0B.0C.-1或0D.l或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知过球面上有三点A,B,C的截面到球心的距离是球半径的一半,且AB=BC=CA=2,则此球的半径是(  )
A.$\frac{3}{4}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
支持“生育二胎”4512821
(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
(2)若对年龄在[5,15)的被调查人中各随机选取两人进行调查,恰好两人都支持“生育二胎放开”的概率是多少?
年龄不低于45岁的人数年龄低于45岁的人数合计
支持a=c=
不支持b=d=
合计
参考数据:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案