精英家教网 > 高中数学 > 题目详情
16.若直线l的倾斜角的取值范围为[$\frac{π}{3}$,$\frac{3π}{4}$],则直线l的斜率的取值范围为(-∞,-1]∪[$\sqrt{3}$,+∞).

分析 设直线的倾斜角为θ,θ∈[$\frac{π}{3}$,$\frac{3π}{4}$],可得斜率k=tanθ>tan$\frac{π}{3}$=$\sqrt{3}$,或k=tanθ<tan$\frac{3π}{4}$=-1,即可得出直线l的斜率的取值范围.

解答 解:设直线的倾斜角为θ,∵θ∈[$\frac{π}{3}$,$\frac{3π}{4}$],
∴斜率k=tanθ>tan$\frac{π}{3}$=$\sqrt{3}$,或k=tanθ<tan$\frac{3π}{4}$=-1.
∴其斜率的取值范围为:(-∞,-1]∪[$\sqrt{3}$,+∞).
故答案为:(-∞,-1]∪[$\sqrt{3}$,+∞).

点评 本题考查了直线的倾斜角与斜率的关系、正切函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,对于任意的n∈N*,都有Sn=2an-3n(n∈N*).
(1)求数列{an}的首项a1及数列的递推关系式an+1=f(an);
(2)若数列{an+c}成等比数列,求常数c的值,并求数列{an}的通项公式;
(3)数列{an}中是否存在三项as,ap,ar(s<p<r),它们组成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知log23=a,log37=b,用a,b表示log2442.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2sin(2x+$\frac{π}{3}$)+a的最大值为1.
(1)求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,若方程g(x)=m在x∈[0,$\frac{π}{2}$]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知10a=2,10b=3,则log312=$\frac{2a+b}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ex,对于实数m、n、p有f(m+n)=f(m)+f(n),f(m+n+p)=f(m)+f(n)+f(p),则p的最大值等于2ln2-ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正四面体的棱长$\sqrt{2}$,则其外接球的表面积为(  )
A.B.12πC.$\frac{\sqrt{3}}{2}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,直线OA与截面ABC所成的角为30°,则球O的表面积为(  )
A.B.16πC.$\frac{4}{3}$πD.$\frac{16}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.2015年7月31日,国际奥委会在吉隆坡正式宣布2022年奥林匹克冬季奥运会(简称冬奥会)在北京和张家口两个城市举办.某中学为了普及奥运会知识和提高学生参加体育运动的积极性,举行了一次奥运知识竞赛.随机抽取了30名学生的成绩,绘成如图所示的茎叶图,若规定成绩在75分以上(包括75分)的学生定义为甲组,成绩在75分以下(不包括75分)定义为乙组.
(1)在这30名学生中,甲组学生中有男生7人,乙组学生中有女生12人,试问有没有90%的把握认为成绩分在甲组或乙组与性别有关;
(2)①如果用分层抽样的方法从甲组和乙组中抽取5人,再从这5人中随机抽取2人,那么至少有1人在甲组的概率是多少?
②用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机选取3人,用ξ表示所选3人中甲组的人数,试写出ξ的分布列,并求出ξ的数学期望.附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;其中n=a+b+c+d
独立性检验临界表:
P(K2>k00.1000.0500.010
K2.7063.8416.635

查看答案和解析>>

同步练习册答案