精英家教网 > 高中数学 > 题目详情

【题目】下列四个命题:①在回归模型中,预报变量y的值不能由解释变量x唯一确定;②若变量xy满足关系,且变量yz正相关,则xz也正相关;③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;④以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则

其中真命题的个数为(

A.1B.2C.3D.4

【答案】C

【解析】

直接利用回归直线的方程的应用,相关的变量关系的应用,残差图的应用分析结果.

下列四个命题:

①在回归模型中,预报变量y的值不能由解释变量x唯一确定;根据回归模型中的变量关系,正确.

②若变量xy满足关系,且变量yz正相关,则xz也正相关;应该是负相关.故错误.

③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;即越接近于回归直线的距离越小,故正确.

④以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则.故正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列的前项和为,若存在正整数,且,使得同时成立,则称数列数列”.

1)若首项为,公差为的等差数列数列,求的值;

2)已知数列为等比数列,公比为.

①若数列数列,求的值;

②若数列数列,求证:为奇数,为偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面的中点.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线的参数方程为,曲线的极坐标方程为

求直线的普通方程与曲线的直角坐标方程;

若把曲线上给点的横坐标伸长为原来的倍,纵坐标伸长为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数),设的交点为,当变化时, 的轨迹为曲线.

(1)写出的普遍方程及参数方程;

(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线的极坐标方程为 为曲线上的动点,求点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共12分)

已知函数 为自然对数的底数).

(Ⅰ)讨论的单调性;

(Ⅱ)当时,不等式恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,且,过点分别作于点于点,连接,则三棱锥的体积的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,椭圆的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求经过椭圆右焦点且与直线垂直的直线的极坐标方程;

(2)若为椭圆上任意-点,当点到直线距离最小时,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是三条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若是两条异面直线,,则

④若,则.

其中正确命题的序号是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案