精英家教网 > 高中数学 > 题目详情
9.已知定义在R上的函数f(x)=ex+x2-x+sinx,则函数y=f(x)在点(0,f(0))处的切线方程为(  )
A.y=3x-2B.y=x+1C.y=2x-1D.y=-2x+3

分析 求出函数的导数,求得切线的斜率和切点的坐标,由直线的点斜式方程,即可得到切线方程.

解答 解:函数f(x)=ex+x2-x+sinx的导数为f′(x)=ex+2x-1+cosx,
函数y=f(x)在点(0,f(0))处的切线斜率为k=e0-1+1=1,
切点为(0,1),
即有函数y=f(x)在点(0,f(0))处的切线方程为y-1=x-0,
即为y=x+1.
故选B.

点评 本题考查导数的运用:求切线方程,主要考查导数的几何意义:曲线在某点处的切线斜率即为函数在该点处的导数,正确求导是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若向量$\overrightarrow{a}$=(2,-x)与$\overrightarrow{b}$=(x,-8)的夹角为钝角,则x的范围为x<0且x≠-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{19}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|等于(  )
A.$\sqrt{13}$B.$\sqrt{15}$C.$\sqrt{17}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.灯塔A和灯塔B与海洋观察站C的距离都是10海里,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东20°,则灯塔A和灯塔B的距离为(  )
A.10海里B.20海里C.10$\sqrt{2}$海里D.10$\sqrt{3}$海里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在△ABC中,设$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow{b}$,又$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$.
(Ⅰ)用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow{AD}$;
(Ⅱ)若点E是AC边的中点,直线BE交AD于F点,求$\overrightarrow{AF}•\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=$\frac{sinθ}{3}{x^3}+\frac{{\sqrt{3}cosθ}}{2}{x^2}$+tanθ,则f′(1)取值范围[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=cos(2x+\frac{π}{3})-cos2x(x∈R)$,下列命题:
①函数f(x)是最小正周期为π的奇函数;
②函数f(x)的一条对称轴是x=$\frac{2π}{3}$;
③函数f(x)图象的一个对称中心为$(\frac{5π}{12},0)$;
④函数f(x)的递增区间为$[{\frac{π}{6}+kπ,\frac{2π}{3}+kπ}](k∈Z)$.
其中正确命题的序号为(  )
A.①③④B.①②④C.②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,设角A,B,C的对边分别为a,b,c,如果a:b:c=3:2:4,那么cosC=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某工厂有旧墙一面,长14m,现在准备利用这面旧墙建造平面图形为矩形、面积为126  m2的厂房,工程条件是:①建1m长新墙的费用为a元;②修1m长旧墙的费用为$\frac{a}{4}$元;③拆去1m长旧墙,用所得的材料建1m长新墙的费用为$\frac{a}{2}$元; ④屋顶及地面需要的费用为b元; 经讨论有两种方案:
(1)利用旧墙的一段x m(x<14)为矩形厂房一面的边长;
(2)矩形厂房利用旧墙的一面边长为x(x≥14).问如何利用旧墙,即x为多少米时,建造费用最省?

查看答案和解析>>

同步练习册答案