精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=cos(2x+\frac{π}{3})-cos2x(x∈R)$,下列命题:
①函数f(x)是最小正周期为π的奇函数;
②函数f(x)的一条对称轴是x=$\frac{2π}{3}$;
③函数f(x)图象的一个对称中心为$(\frac{5π}{12},0)$;
④函数f(x)的递增区间为$[{\frac{π}{6}+kπ,\frac{2π}{3}+kπ}](k∈Z)$.
其中正确命题的序号为(  )
A.①③④B.①②④C.②③D.②③④

分析 由三角函数中的恒等变换应用化简函数解析式可得f(x)=-sin(2x+$\frac{π}{6}$),根据正弦函数的性质可判断①不正确;由2x+$\frac{π}{6}$=kπ$+\frac{π}{2}$,k∈Z可解得对称轴是x=$\frac{2π}{3}$,②正确;由2x+$\frac{π}{6}$=kπ,k∈Z可解得函数f(x)的一个对称中心为$(\frac{5π}{12},0)$,③正确;由2kπ$+\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,可解得函数f(x)的递增区间,即可判定④不正确.

解答 解:∵$f(x)=cos(2x+\frac{π}{3})-cos2x(x∈R)$
=-$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=-sin(2x+$\frac{π}{6}$),
∴可得函数f(x)是最小正周期为π的非奇函数,①不正确;
由2x+$\frac{π}{6}$=kπ$+\frac{π}{2}$,k∈Z可解得:x=$\frac{kπ}{2}+\frac{π}{6}$,k∈Z,当k=1时,可得函数f(x)的一条对称轴是x=$\frac{2π}{3}$,②正确;
由2x+$\frac{π}{6}$=kπ,k∈Z可解得:x=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z,当k=1时,可得函数f(x)的一个对称中心为$(\frac{5π}{12},0)$,③正确;
由2kπ$+\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,可解得函数f(x)的递增区间为$[{\frac{π}{6}+kπ,\frac{5π}{6}+kπ}](k∈Z)$.④不正确;
故选:C.

点评 本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.如图,用A、B、C、D表示四类不同的元件连接成系统M.当元件A、B至少有一个正常工作且元件C、D至少有一个正常工作时,系统M正常工作.已知元件A、B、C、D正常工作的概率依次为:0.3、0.6、0.5、0.8,元件连接成的系统M正常工作的概率P(M)=0.648.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设条件p:a≥0;条件q:a2+a≥0,那么p是q的(  )
A.必要而不充分条件B.充分而不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的函数f(x)=ex+x2-x+sinx,则函数y=f(x)在点(0,f(0))处的切线方程为(  )
A.y=3x-2B.y=x+1C.y=2x-1D.y=-2x+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知空间三点A(0,2,3),B (-2,1,6),C(1,-1,5)
(1)求以AB,AC为邻边的平行四边形面积  
(2)求平面ABC一个法向量  
(3)若向量$\overrightarrow a$分别与$\overrightarrow{AB}\;,\;\overrightarrow{AC}$垂直,且$|{\overrightarrow a}|=\sqrt{3}$求$\overrightarrow a$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\sqrt{{{log}_{\frac{1}{2}}}(4-x)}$的定义域是(  )
A.(-∞,4)B.[3,4)C.(3,4)D.[3,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知α为钝角,$sin(\frac{π}{4}+α)=\frac{3}{4}$,则cosα=$\frac{{3\sqrt{2}-\sqrt{14}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=x2-2bx+1在区间(0,1)内有极小值$\frac{1}{4}$,则b的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,以下三个说法中正确的有(  )个
①若$\overrightarrow{a}$∥$\overrightarrow{b}$,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为|$\overrightarrow{a}$|;
②若$\overrightarrow{a}$•$\overrightarrow{b}$<0,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为钝角;
③若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则存在实数λ,使得$\overrightarrow{b}$=λ$\overrightarrow{a}$.
A.0B.3C.2D.1

查看答案和解析>>

同步练习册答案