精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=cos(x+φ)+$\sqrt{3}$sin(x-φ)(-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)是定义在R上的偶函数.
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再将所得图象个点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在(0,$\frac{π}{2}$)上的值域.

分析 根据偶函数的定义f(-x)=f(x),求出φ的值,然后利用和差公式化简f(x),根据图象变换求出g(x)的解析式,结合余弦函数的值域求解函数g(x)的值域.

解答 解:(Ⅰ)∵函数f(x)是定义在R上的偶函数,
∴f-x)=f(x).
即cos(-x+φ)+$\sqrt{3}$sin(-x-φ)=cos(x+φ)+$\sqrt{3}$sin(x-φ)
化简得:2sinxsinφ-2$\sqrt{3}sinxcos$φ=0
2sinx(sinφ-$\sqrt{3}$cosφ)=0
4sinxsin(φ-$\frac{π}{3}$)=0.
上式对于任意的x恒成立,所以sin(φ-$\frac{π}{3}$)=0.
∴φ-$\frac{π}{3}$=kπ,k∈Z.
∵-$\frac{π}{2}$≤φ≤$\frac{π}{2}$,
∴φ=$\frac{π}{3}$.
(Ⅱ)f(x)=cos(x+$\frac{π}{3}$)+$\sqrt{3}$sin(x-$\frac{π}{3}$)
=$\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx+\frac{\sqrt{3}}{2}sinx-\frac{3}{2}cosx$
=-cosx,
函数y=f(x)的图象向左平移$\frac{π}{6}$个单位得y=-cos(x$+\frac{π}{6}$)的图象;再将所得图象个点的横坐标缩短为原来的$\frac{1}{2}$倍,得y=-cos(2x$+\frac{π}{6}$)的图象.
∴g(x)=-cos(2x$+\frac{π}{6}$).
∵x∈(0,$\frac{π}{2}$)∴$\frac{π}{6}<2x+\frac{π}{6}<\frac{7π}{6}$,
∴$-\frac{\sqrt{3}}{2}<$-cos(2x$+\frac{π}{6}$)≤1.
∴g(x)在(0,$\frac{π}{2}$)上的值域为(-$\frac{\sqrt{3}}{2}$,1].

点评 本题考查了三角函数的奇偶性、值域及三角函数图象的变换,函数奇偶性的定义是解决函数奇偶性问题的一般方法,在图象平移变换时“左加右减,上加下减”,伸缩变换注意系数的变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=4,P为平面ABCD外一点,且PA=PB,PD=PC,N为CD中点.
(1)求证:平面PCD⊥平面ABCD;
(2)在线段PC上是否存在一点E使得NE∥平面ABP.若存在,说明理由并确定E点的位置,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对于任意实数x,规定[x]表示不大于x的最大整数,则不等式4[x]2-12[x]+5<0成立的充分不必要条件是(  )
A.x∈($\frac{1}{2}$,$\frac{5}{2}$)B.x∈($\frac{1}{2}$,3)C.x∈[1,2]D.x∈[1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某学会年会会员代表席位与会员人数的资料如表:
 城市 代表席位会员人数 
 A 7 270
 B 11 480
 C 13 730
 D 18 1220
 E 22 1860
 F 242400 
根据上述资料,可以判定最能反映各城市代表席位y与会员人数x之间关系的是(  )
A.y=$\frac{x}{40}$B.y=$\frac{x}{10}$-20C.y=$\root{3}{x}$+2D.y=$\frac{1}{2}\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a、b、c∈R*,求证:
(1)(a+b+c)($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)≥9;
(2)(a+b+c)($\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{a+c}$)≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆C:(x-2t)2+(y-t22=1,当圆C到直线x+y+3=0的距离最小时,圆心的坐标为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数y=$\frac{-2{m}^{2}-3m+2}{{m}^{2}+1}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某流程图如图所示,现输入如下四个函数,则可以输出的函数是(  )
A.f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$B.f(x)=$\frac{cosx}{x}$(-$\frac{π}{2}$$<x<\frac{π}{2}$)
C.f(x)=$\frac{|x|}{x}$D.f(x)=x2ln(x2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的渐近线方程是(  )
A.y=±$\frac{2}{3}$xB.y=±$\frac{4}{9}$xC.y=±$\frac{3}{2}$xD.y=±$\frac{9}{4}$x

查看答案和解析>>

同步练习册答案