精英家教网 > 高中数学 > 题目详情
4.对于任意实数x,规定[x]表示不大于x的最大整数,则不等式4[x]2-12[x]+5<0成立的充分不必要条件是(  )
A.x∈($\frac{1}{2}$,$\frac{5}{2}$)B.x∈($\frac{1}{2}$,3)C.x∈[1,2]D.x∈[1,3)

分析 先求出关于[x]的不等式的解集,然后根据新定义得到x的范围即可.

解答 解:由4[x]2-12[x]+5<0,得:$\frac{1}{2}$<[x]<$\frac{5}{2}$,
又[x]表示不大于x的最大整数,所以1≤x≤2.
故选:C.

点评 本题考查一元二次不等式的解法,考查学生理解新定义的能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.直线x+ay+1=0与圆x2+(y-1)2=4的位置关系是(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.三棱锥P-ABC中,∠APB=∠BPC=∠CPA=60°,PA=a,PB=b,PC=c,求此三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设m=3${∫}_{-1}^{1}$(x2+sinx)}dx,则多项式(x+$\frac{1}{{m\sqrt{x}}}$)6的常数项为(  )
A.$-\frac{5}{4}$B.$\frac{5}{4}$C.$-\frac{15}{16}$D.$\frac{15}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α是△ABC的内角,若cosα、$\frac{1}{2}$、sinα成等差数列,且△ABC的周长为$\sqrt{2}$,则最大边长的最小值为2-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π),求$\frac{cosθ}{sinθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于任意实数x,规定[x]表示不大于x的最大整数,则不等式4[x]2-36[x]+45<0,成立的充分不必要条件是(  )
A.x∈($\frac{3}{2}$,$\frac{15}{2}$)B.x∈($\frac{3}{2}$,8)C.x∈[2,8)D.x∈[2,7]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=cos(x+φ)+$\sqrt{3}$sin(x-φ)(-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)是定义在R上的偶函数.
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再将所得图象个点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在(0,$\frac{π}{2}$)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数m,n满足m>0,n<0,且$\frac{1}{m}+\frac{1}{n}=1$,则4m+n(  )
A.有最小值9B.有最大值9C.有最大值1D.有最小值1

查看答案和解析>>

同步练习册答案