精英家教网 > 高中数学 > 题目详情
1.执行如图所示的程序框图,输出的k值为(  )
A.7B.9C.11D.13

分析 模拟执行程序框图,依次写出每次循环得到的S,k的值,当S=-lg11时,满足条件S<-1,退出循环,输出k的值为11.

解答 解:模拟执行程序框图,可得
S=0,k=1
不满足条件S<-1,S=-lg3,k=3
不满足条件S<-1,S=-lg5,k=5
不满足条件S<-1,S=-lg7,k=7
不满足条件S<-1,S=-lg9,k=9
不满足条件S<-1,S=-lg11,k=11
满足条件S<-1,退出循环,输出k的值为11.
故选:C.

点评 本题主要考查了程序框图和算法,依次写出每次循环得到的S,k的值是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知数列{xn},{yn},且x1=3,xn+1=$\frac{2{x}_{n}+1}{-{x}_{n}}$,则yn=$\frac{{x}_{n}-1}{{x}_{n}+1}$=$\frac{4n-3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,若k=100,则输出的结果为(  )
A.170B.126C.62D.42

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数y=f(x)(x∈R)满足f(x)=2f(x-2),且x∈[-1,1]时,f(x)=|x|-1,则当x∈[-9,0)∪(0,9]时,y=f(x)与$g(x)={log_{\frac{1}{3}}}|x|$的图象的交点的个数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线E:y2=2px(p>0)的准线与x轴交于点M,过点M作圆C:(x-2)2+y2=1的两条切线,切点为A,B,|AB|=$\frac{4\sqrt{2}}{3}$.
(Ⅰ)求抛物线E的方程;
(Ⅱ)过M点斜率为k的直线l与抛物线E交于H、G两点.是否存在这样的k,使得抛物线E上总存在点Q(x0,y0)满足QH⊥QG,若存在,求k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,边a,b,c的对角分别为A,B,C;且b=4,A=$\frac{π}{3}$,面积S=2$\sqrt{3}$.
(Ⅰ)求a的值;
(Ⅱ)设f(x)=2(cosCsinx-cosAcosx),将f(x)图象上所有点的横坐标变为原来的$\frac{1}{2}$(纵坐标不变)得到g(x)的图象,求g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+$\frac{1}{x}$(a∈R).
(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)如果函数g(x)=f(x)-2x在(0,+∞)上单调递减,求a的取值范围;
(Ⅲ)当a>0时,讨论函数y=f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有6种不同的颜色,从中挑出最多3种,给4个方格填色,有1596种填法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将函数y=sin(2x+φ)(0<φ<2π)的图象向右平移$\frac{π}{2}$个单位长度后得函数y=f(x)图象,且函数y=f(x)在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增,则φ的值为(  )
A.$\frac{π}{3}$B.$\frac{5π}{3}$C.$\frac{π}{3}$若$\frac{5π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案