分析 (1)利用正弦定理化简表达式,求角B;个两角和与差的三角函数化简求解即可.
(2)利用余弦定理求边长b的最小值.推出b的表达式,利用基本不等式求解即可.
解答 解:(1)在△ABC中,由已知$\frac{cosC}{cosB}=\frac{2sinA-sinC}{sinB}$,
即cosCsinB=(2sinA-sinC)cosB,
sin(B+C)=2sinAcosB,sinA=2sinAcosB,…4分
△ABC 中,sinA≠0,
故$cosB=\frac{1}{2},B=\frac{π}{3}$. …6分.
(2)a+c=2,
由(1)$B=\frac{π}{3}$,因此b2=a2+c2-2accosB=a2+c2-ac …9分
由已知b2=(a+c)2-3ac=4-3ac …10分
$≥4-3{({\frac{a+c}{2}})^2}=4-3=1$ …11分
故b 的最小值为1.…12分
点评 本题考查正弦定理以及余弦定理的应用,两角和与差的三角函数,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,3) | B. | [0,3) | C. | (-2,3) | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com