精英家教网 > 高中数学 > 题目详情
19.如图,四边形ABCD、ADEF为正方形,G,H是DF,FC的中点.
(1)求证:GH∥平面CDE;
(2)求证:BC⊥平面CDE.

分析 (1)由中位线定理得出GH∥CD,故GH∥平面CDE;
(2)由AD⊥CD,AD⊥DE得出AD⊥平面CDE,而BC∥AD,故BC⊥平面CDE.

解答 证明:(1)∵G,H是DF,FC的中点.
∴GH∥CD,
又GH?平面CDE,CD?平面CDE,
∴GH∥平面CDE.
(2)∵四边形ABCD、ADEF为正方形,
∴DE⊥AD,CD⊥AD,BC∥AD.
又DE?平面CDE,CD?平面CDE,CD∩DE=D,
∴AD⊥平面CDE,
又BC∥AD,
∴BC⊥平面CDE.

点评 本题考查了线面平行,线面垂直的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知向量|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=mx2-(1-m)x+m,其中m是实数.
(1)若函数f(x)没有零点,求m的取值范围;
(2)设不等式f(x)<mx+m的解集为A且m>0,当m为何值时,集合A⊆(-∞,3)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是递增的等差数列,a2,a4是方程x2-6x+8=0的根.
(Ⅰ)求{an}的通项公式; 
(Ⅱ)求数列{an+2n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,抛物线W:y2=4x与圆C:(x-1)2+y2=25交于A,B两点,点P为劣弧$\widehat{AB}$上不同于A,B的一个动点,与x轴平行的直线PQ交抛物线W于点Q,则△PQC的周长的取值范围是(  )
A.(10,14)B.(12,14)C.(10,12)D.(9,11)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)在R上满足f(-x)+f(x)=0,且x>0时,f(x)=$\frac{1}{2}$(|x+sinα|+|x+2sinα|)+$\frac{3}{2}$sinα(-$\frac{π}{2}$≤α≤$\frac{3π}{2}$)对任意的x∈R,都有f(x-3$\sqrt{3}$)≤f(x)恒成立,则实数α的取值范围为(  )
A.[0,π]B.[-$\frac{π}{3}$,$\frac{2π}{3}$]C.[-$\frac{π}{6}$,$\frac{7π}{6}$]D.[-$\frac{π}{3}$,$\frac{4π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设等差数列{an}前n项和为Sn,且a5+a6=24,S11=143.
(1)求数列{an}的通项公式;
(2)数列{cn}的前n项和为Tn,且2${\;}^{{a}_{n}-1}$=λTn-2(λ是非零实数),{cn}是等比数列吗?若是,求λ的值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}中,a10=19,公差d≠0,且a1,a2,a5成等比数列.
(1)求an
(2)设bn=$\frac{2}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和Sn满足4an-3Sn=2,其中n∈N*
(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)设bn=$\frac{1}{2}$an-4n,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案