分析 (1)通过讨论m>0或m<0结合△<0,得到关于m的不等式组,解出即可;(2)求出不等式f(x)<mx+m的解集,求出m的值即可.
解答 解:(1)二次函数f(x)=mx2-(1-m)x+m,
若函数f(x)没有零点,
则$\left\{\begin{array}{l}{m>0}\\{△{=(1-m)}^{2}-{4m}^{2}<0}\end{array}\right.$或$\left\{\begin{array}{l}{m<0}\\{△{=(1-m)}^{2}-{4m}^{2}<0}\end{array}\right.$,
解得:m>$\frac{1}{3}$或m<-1;
(2)不等式f(x)<mx+m,
即mx2-x<0,即x(mx-1)<0,
∵m>0,∴x=$\frac{1}{m}$>0,
∴不等式的解集是A=(0,$\frac{1}{m}$)⊆(-∞,3),
故$\frac{1}{m}$≤3,解得:m≥$\frac{1}{3}$.
点评 本题考查了二次函数的性质,考查不等式问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生 | A1 | A2 | A3 | A4 | A5 |
| 数学x | 89 | 91 | 93 | 95 | 97 |
| 物理y | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | $\frac{1}{27}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2-x-2=0,则x=2”的逆否命题为“x≠2,则x2-x-2≠0” | |
| B. | 若命题p:?x∈R,x2+x+1=0,则¬p:?x∈R,x2+x+1≠0 | |
| C. | 若p∧q为假命题,则p,q均为假命题 | |
| D. | “x>2”是“x2-3x+2>0”的充分不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com