18£®Òø´¨ÌÆáâ»ØÃñÖÐѧ¸ß¶þÄ꼶ij´ÎÖÜ¿¼ÖУ¨Âú·Ö100·Ö£©£¬Àí¿ÆA°àÎåÃûͬѧµÄÎïÀí³É¼¨Èç±íËùʾ£º
ѧÉúA1A2A3A4A5
Êýѧx8991939597
ÎïÀíy8789899293
£¨1£©ÇëÔÚÈçͼֱ½Ç×ø±êϵÖÐ×÷³öÁ½×éÊý¾ÝÉ¢µãͼ£¬²¢ÅжÏÕý¸ºÏà¹Ø£»
£¨2£©ÒÀ¾ÝÉ¢µãͼ˵Ã÷ÎïÀí³É¼¨ÓëÊýѧ³É¼¨ÊÇ·ñ¾ßÓÐÏßÐÔÏà¹ØÐÔ£¬ÈôÓУ¬Çó³öÏßÐԻعéÖ±Ïß·½³Ì£»
£¨3£©Òª´Ó4ÃûÊýѧ³É¼¨¸ßÓÚ90·ÖÒÔÉϵÄͬѧÖÐÑ¡³ö2È˲μӴóѧÏÈÐ޿γ̵Äѧϰ£¬ÇóËùÑ¡Á½ÈËÖÐÖÁÉÙÓÐÒ»ÈËÎïÀí³É¼¨¸ßÓÚ90·ÖµÄ¸ÅÂÊ£®
ÒÔϹ«Ê½¼°Êý¾Ý¹©Ñ¡Ôñ£º
b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬a=$\overline{y}$-b$\overline{x}$
$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=41880£»
$\sum_{i=1}^{5}{{x}_{i}}^{2}$=43285£®

·ÖÎö £¨1£©ÒÔÊýѧ³É¼¨Îªºá×ø±ê£¬ÒÔÎïÀí³É¼¨Îª×Ý×ø±êÃèµã£¬¸ù¾ÝÉ¢µãͼµÄÐÎ×´ÅжÏÕý¸ºÏà¹ØÐÔ£»
£¨2£©ÀûÓûعéϵÊý¹«Ê½Çó³ö»Ø¹é·½³Ì£»
£¨3£©ÁоٳöËùÓпÉÄܵĻù±¾Ê¼þºÍ·ûºÏÌõ¼þµÄ»ù±¾Ê¼þ£¬ÊôÓڹŵä¸ÅÐ͵ĸÅÂʼÆË㹫ʽÇó³ö¸ÅÂÊ£®

½â´ð ½â£º£¨1£©×÷³öÉ¢µãͼÈçͼËùʾ£º

ÓÉÉ¢µãͼ¿ÉÖªxÓëyÕýÏà¹Ø£®
£¨2£©ÓÉÈýµãͼ¿ÉÖª±äÁ¿xÓëy¾ßÓÐÏßÐÔÏà¹ØÐÔ£®
$\overline{x}$=$\frac{89+91+93+95+97}{5}=93$£¬$\overline{y}=\frac{87+89+89+92+93}{5}=90$£®
¡àb=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$=$\frac{41880-5¡Á93¡Á90}{43285-5¡Á9{3}^{2}}$=0.75£®
a=$\overline{y}-b\overline{x}$=90-0.75¡Á93=20.25£®
¡àÏßÐԻع鷽³ÌΪy=0.75x+20.25£®
£¨3£©´Ó4ÃûÊýѧ³É¼¨¸ßÓÚ90·ÖÒÔÉϵÄͬѧÖÐÑ¡³ö2È˹²ÓÐ6¸ö»ù±¾Ê¼þ£¬·Ö±ðÊÇ£¨A2£¬A3£©£¬£¨A2£¬A4£©£¬£¨A2£¬A5£©£¬£¨A3£¬A4£©£¬£¨A3£¬A5£©£¬£¨A4£¬A5£©£¬
ÆäÖÐÖÁÉÙÓÐÒ»ÈËÎïÀí³É¼¨¸ßÓÚ90µÄÓÐ5¸ö»ù±¾Ê¼þ£¬·Ö±ðÊÇ£¨A2£¬A4£©£¬£¨A2£¬A5£©£¬£¨A3£¬A4£©£¬£¨A3£¬A5£©£¬£¨A4£¬A5£©£®
¡àËùÑ¡Á½ÈËÖÐÖÁÉÙÓÐÒ»ÈËÎïÀí³É¼¨¸ßÓÚ90·ÖµÄ¸ÅÂÊP=$\frac{5}{6}$£®

µãÆÀ ±¾Ì⿼²éÁËÏßÐԻع鷽³ÌµÄÇó½â£¬¹Åµä¸ÅÐ͵ĸÅÂʼÆË㣬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¡¶¾ÅÕÂËãÊõ¡·ÓÐÕâÑùÒ»¸öÎÊÌ⣺½ñÓÐÅ®×ÓÉÆÖ¯£¬ÈÕÔöµÈ³ß£¬ÆßÈÕÖ¯¶þʮһ³ß£¬µÚ¶þÈÕ£¬µÚÎåÈÕ£¬µÚ°ËÈÕËùÖ¯Ö®ºÍΪʮÎå³ß£¬ÎʵھÅÈÕËùÖ¯³ßÊýΪ£¨¡¡¡¡£©
A£®7B£®9C£®11D£®13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÏòÁ¿|$\overrightarrow{a}$|=2£¬|$\overrightarrow{b}$|=1£¬£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾=60¡ã£¬Ôò|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¡÷ABCµÄÖܳ¤µÈÓÚ20£¬Ãæ»ýÊÇ$10\sqrt{3}$£¬A=60¡ã£¬Ôò½ÇAµÄ¶Ô±ß³¤Îª£¨¡¡¡¡£©
A£®5B£®6C£®7D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚ¡÷ABCÖУ¬a¡¢b¡¢c·Ö±ðÊǽÇA¡¢B¡¢CËù¶ÔµÄ±ß£¬ÒÑÖªa=2£¬c=5£¬$cosB=\frac{3}{5}$£®
£¨¢ñ£©Çó±ßbµÄÖµ£»                      
£¨¢ò£©ÇósinCµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚ¡÷ABCÖУ¬ÈôA=30¡ã£¬$a=\sqrt{3}$£¬Ôò$\frac{a+b+c}{sinA+sinB+sinC}$=2$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=mx2-£¨1-m£©x+m£¬ÆäÖÐmÊÇʵÊý£®
£¨1£©Èôº¯Êýf£¨x£©Ã»ÓÐÁãµã£¬ÇómµÄȡֵ·¶Î§£»
£¨2£©Éè²»µÈʽf£¨x£©£¼mx+mµÄ½â¼¯ÎªAÇÒm£¾0£¬µ±mΪºÎֵʱ£¬¼¯ºÏA⊆£¨-¡Þ£¬3£©£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÊýÁÐ{an}ÊǵÝÔöµÄµÈ²îÊýÁУ¬a2£¬a4ÊÇ·½³Ìx2-6x+8=0µÄ¸ù£®
£¨¢ñ£©Çó{an}µÄͨÏʽ£» 
£¨¢ò£©ÇóÊýÁÐ{an+2n}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬a10=19£¬¹«²îd¡Ù0£¬ÇÒa1£¬a2£¬a5³ÉµÈ±ÈÊýÁУ®
£¨1£©Çóan£»
£¨2£©Éèbn=$\frac{2}{{a}_{n}{a}_{n+1}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸