分析 (Ⅰ)由余弦定理b2=a2+c2-2accosB,由此能求出b的值.
(Ⅱ)先求出$sinB=\frac{4}{5}$,再由正弦定理,能求出sinC的值.
解答 解:(Ⅰ)∵在△ABC中,a、b、c分别是角A、B、C所对的边,
a=2,c=5,$cosB=\frac{3}{5}$.
∴由余弦定理b2=a2+c2-2accosB,
∴${b^2}=4+25-2×2×5×\frac{3}{5}=17$,
解得$b=\sqrt{17}$.
(Ⅱ)∵$cosB=\frac{3}{5}$,B∈(0,π),
∴$sinB=\frac{4}{5}$,
由正弦定理,得:$\frac{b}{sinB}=\frac{c}{sinC}$,$\frac{{\sqrt{17}}}{{\frac{4}{5}}}=\frac{5}{sinC}$,
解得$sinC=\frac{{4\sqrt{17}}}{17}$.
点评 本题考查三角形的边长及角的正弦值的求法,是中档题,解题时要认真审题,注意正弦定理、余弦定理的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生 | A1 | A2 | A3 | A4 | A5 |
| 数学x | 89 | 91 | 93 | 95 | 97 |
| 物理y | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | $\frac{1}{27}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com