分析 (I)根据PD⊥底面ABCD得PD⊥BC,由勾股定理的逆定理得出BC⊥BD,故BC⊥平面PBD,于是平面PBC⊥平面PBD;
(II)在Rt△PBD中,求出DP,由E为PB的四等分点得出S△PDE=$\frac{1}{4}{S}_{△PBD}$,于是VP-CDE=VC-PDE=$\frac{1}{3}{S}_{△PDE}•BC$.
解答 (Ⅰ)证明:∵BC=1,CD=2,BD=$\sqrt{3}$,
∴CD2=BC2+BD2,∴BC⊥BD,
∵PD⊥平面ABCD,BC?平面ABCD,
∴PD⊥BC,又PD?平面PBD,BD?平面PBD,BD∩PD=D,
∴BC⊥平面PBD,∵BC?平面PBC,
∴平面PBC⊥平面PBD.
(Ⅱ)解:在Rt△PBD中,∵∠PBD=30°,BD=$\sqrt{3}$,∴PD=1,
∵BE=3PE,∴S△PDE=$\frac{1}{4}{S}_{△PBD}$=$\frac{1}{4}×\frac{1}{2}×\sqrt{3}×1$=$\frac{\sqrt{3}}{8}$.
∴VP-CDE=VC-PDE=$\frac{1}{3}{S}_{△PDE}•BC$=$\frac{1}{3}×\frac{\sqrt{3}}{8}×1$=$\frac{\sqrt{3}}{24}$.
点评 本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 曲线y=g(x)的一个对称中心为点(-$\frac{π}{12}$,0) | |
| B. | 曲线y=g(x)的一个对称轴为直线x=$\frac{kπ}{4}$+$\frac{π}{16}$(k∈Z) | |
| C. | 函数y=g(x)在区间[$\frac{2π}{3}$,$\frac{3π}{4}$]内单调递减 | |
| D. | 函数y=g(x)在区间[$\frac{2π}{3}$,$\frac{3π}{4}$]内不单调 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com