精英家教网 > 高中数学 > 题目详情
10.在直线4x+3y-12=0上有一点P,它到点A(-1,-2)和点B(1,4)的距离相等,求点P的坐标.

分析 根据题意,设出P的坐标,利用距离公式列方程求解即可.

解答 解:设直线4x+3y-12=0上的一点P为(a,4-$\frac{4}{3}$a),则PA=PB,
即$\sqrt{{(a+1)}^{2}{+(4-\frac{4}{3}a+2)}^{2}}$=$\sqrt{{(a-1)}^{2}{+(4-\frac{4}{3}a-4)}^{2}}$,
解得a=3;
所以点P(3,0).

点评 本题考查了两点间距离公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点.
(1)求证:CD⊥平面A1ABB1
(2)求证:AC1∥平面CDB1
(3)求证:平面A1BC⊥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.怎样由函数y=sinx的图象得到函数y=2sin($\frac{1}{3}$x+$\frac{π}{6}$)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=$\frac{1}{4}$sin(πx-$\frac{π}{4}$)cos(πx-$\frac{π}{4}$)+$\frac{\sqrt{3}}{4}$cos2(πx-$\frac{π}{4}$)-$\frac{\sqrt{3}}{8}$.
(Ⅰ)求y=f(x)的单调减区间及对称轴方程;
(Ⅱ)若函数y=f(x)-m在区间[0,$\frac{1}{2}$]上恰好有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|-x2+2x+3>0,x∈R},B={x|$\frac{x-1}{{x}^{2}+x+1}$<0,x∈R},求A∩B,∁UA∪B,A∩∁UB,∁U(A∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)(x∈R),满足f(-x)=-f(x),f(3-x)=f(x),则f(435)=(  )
A.0B.3C.-3D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.方程x2-y2=-1表示(  )
A.焦点在x轴的双曲线B.
C.两条直线D.焦点在y轴的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,BD=$\sqrt{3}$,PD⊥平面ABCD.
(Ⅰ)证明:平面PBC⊥平面PBD;
(Ⅱ)在△PBD中,∠PBD=30°,点E在PB上且BE=3PE,求三棱锥P-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=ax2+bx+c(a≠0,a,b,c∈R),且方程f(x)=x无实数根.给出下列命题:
①若a=1,则不等式f(f(x))>x对一切实数x都成立;
②若a=-1,则存在实数x0,使得f(f(x0))>x0成立;
③若a+b+c=0,则f(f(x))<x对一切实数x都成立;
④方程f(f(x))=x一定无实数根.
其中正确命题的序号为①③④.

查看答案和解析>>

同步练习册答案